Research Article
BibTex RIS Cite

Starlike functions associated with an epicycloid

Year 2022, Volume: 51 Issue: 6, 1637 - 1660, 01.12.2022
https://doi.org/10.15672/hujms.1019973

Abstract

For a natural number $n\geq 2$, the function $\phi_{n\mathcal{L}}(z)=1+nz/(n+1)+z^n/(n+1)$ maps the open unit disk onto a domain bounded by an epicycloid with $(n-1)$ cusps. A class of starlike functions associated with $\phi_{n\mathcal{L}}$ is defined in the unit disk and its sharp bounds on initial coefficients, various inclusion relations and radii problems related to the other subclasses of starlike functions are investigated. As an application, the corresponding results are determined in the limiting case for the class of normalized analytic functions $f$ satisfying $|zf'(z)/f(z)-1|<1$ in the unit disk.

Supporting Institution

Council of Scientific and Industrial Research (CSIR), New Delhi

References

  • [1] R. M. Ali, N. K. Jain and V. Ravichandran, Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane, Appl. Math. Comput. 218 (11), 6557–6565, 2012.
  • [2] A. Alotaibi, M. Arif, M.A. Alghamdi and S. Hussain, Starlikness associated with cosine hyperbolic function, Mathematics 8 (7), 1118, 2020.
  • [3] N. Bohra, S. Kumar and V. Ravichandran, Some special differential subordinations, Hacet. J. Math. Stat. 48 (4), 1017–1034, 2019
  • [4] N. E. Cho, V. Kumar, S. S. Kumar and V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iranian Math. Soc. 45 (1), 213–232, 2019.
  • [5] S. Gandhi, Radius estimates for three leaf function and convex combination of starlike functions, In: Deo N., Gupta V., Acu A., Agrawal P. (eds) Mathematical Analysis I: Approximation Theory. ICRAPAM 2018. Springer Proceedings in Mathematics and Statistics, vol 306. Springer, Singapore, 2020.
  • [6] P. Goel and S. S. Kumar, Certain Class of Starlike Functions Associated with Modified Sigmoid Function, Bull. Malays. Math. Sci. Soc. 43 (1), 957–991, 2020.
  • [7] P. Gupta, S. Nagpal and V. Ravichandran, Inclusion relations and radius problems for a subclass of starlike functions, J. Korean Math. Soc. 58 (5), 1147–1180, 2021.
  • [8] H. Hagen, Curve and surface design, Geometric Design Publications, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992.
  • [9] R. Kanaga and V. Ravichandran, Starlikeness for certain close-to-star functions, Hacet. J. Math. Stat. 50 (2), 414–432, 2021.
  • [10] R. Kargar, A. Ebadian and J. Sokół, On Booth lemniscate and starlike functions, Anal. Math. Phys. 9 (1), 143–154, 2019
  • [11] F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20, 8–12, 1969.
  • [12] K. Khatter, V. Ravichandran and S. Sivaprasad Kumar, Starlike functions associated with exponential function and the lemniscate of Bernoulli, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113 (1), 233–253, 2019.
  • [13] S. S. Kumar and G. Kamaljeet, A cardioid domain and starlike functions, Anal. Math. Phys. 11 (2), 54, 2021.
  • [14] S. S. Kumar and Kush Arora, Starlike Functions associated with a Petal Shaped Domain, arXiv: 2010.10072, 15 pages, 2020.(accepted in BKMS)
  • [15] S. Kumar and V. Ravichandran, A subclass of starlike functions associated with a rational function, Southeast Asian Bull. Math. 40 (2), 199–212, 2016.
  • [16] J. D. Lawrence, A catalog of special plane curves, Dover Publications, 1972.
  • [17] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA. 157–169, Tianjin, 1992.
  • [18] T. H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc. 104, 532–537, 1962.
  • [19] T. H. MacGregor, The radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 14, 514–520, 1963.
  • [20] T. H. MacGregor, The radius of univalence of certain analytic functions, Proc Amer. Math. Soc. 14, 521–524, 1963.
  • [21] J. S. Madachy, Madachy’s Mathematical Recreations, New York: Dover, pp. 219-225, 1979.
  • [22] R. Mendiratta, S. Nagpal and V. Ravichandran, A subclass of starlike functions associated with left-half of the lemniscate of Bernoulli, Internat. J. Math. 25 (9), 1450090, 17 pp ,2014.
  • [23] R. Mendiratta, S. Nagpal and V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc. 38 (1), 365–386, 2015.
  • [24] D. V. Prokhorov and J. Szynal, Inverse coefficients for $(\alpha,\beta )$-convex functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 35 (1981), 125–143, 1984.
  • [25] R. K. Raina and J. Sokół, Some properties related to a certain class of starlike functions, C. R. Math. Acad. Sci. Paris 353 (11), 973–978, 2015.
  • [26] V. Ravichandran and S. Verma, Bound for the fifth coefficient of certain starlike functions, C. R. Math. Acad. Sci. Paris 353 (6), 505–510, 2015.
  • [27] K. Sharma, N. K. Jain and V. Ravichandran, Starlike functions associated with a cardioid, Afr. Mat. 27 (5-6), 923–939, 2016.
  • [28] P. Sharma, R. K. Raina and J. Sokół, Certain Ma–Minda type classes of analytic functions associated with the crescent-shaped region, Anal. Math. Phys. 9 (4), 1887– 1903, 2019.
  • [29] R. Singh, On a class of star-like functions, Compositio Math. 19, 78–82, 1967.
  • [30] J. Sokół and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat. 19, 101–105, 1996.
  • [31] J. Sokół, On some subclass of strongly starlike functions, Demonstratio Math. 31 (1), 81–86, 1998.
  • [32] B. A. Uralegaddi, M. D. Ganigi and S. M. Sarangi, Univalent functions with positive coefficients, Tamkang J. Math. 25 (3), 225–230, 1994.
  • [33] L. A. Wani and A. Swaminathan, Radius problems for functions associated with a nephroid domain, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (4), 178, 2020.
  • [34] Y. Yunus, S. A. Halim and A. B. Akbarally, Subclass of starlike functions associated with a limacon, AIP Conference Proceedings, AIP Publishing 1974 (1), 2018.
Year 2022, Volume: 51 Issue: 6, 1637 - 1660, 01.12.2022
https://doi.org/10.15672/hujms.1019973

Abstract

References

  • [1] R. M. Ali, N. K. Jain and V. Ravichandran, Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane, Appl. Math. Comput. 218 (11), 6557–6565, 2012.
  • [2] A. Alotaibi, M. Arif, M.A. Alghamdi and S. Hussain, Starlikness associated with cosine hyperbolic function, Mathematics 8 (7), 1118, 2020.
  • [3] N. Bohra, S. Kumar and V. Ravichandran, Some special differential subordinations, Hacet. J. Math. Stat. 48 (4), 1017–1034, 2019
  • [4] N. E. Cho, V. Kumar, S. S. Kumar and V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iranian Math. Soc. 45 (1), 213–232, 2019.
  • [5] S. Gandhi, Radius estimates for three leaf function and convex combination of starlike functions, In: Deo N., Gupta V., Acu A., Agrawal P. (eds) Mathematical Analysis I: Approximation Theory. ICRAPAM 2018. Springer Proceedings in Mathematics and Statistics, vol 306. Springer, Singapore, 2020.
  • [6] P. Goel and S. S. Kumar, Certain Class of Starlike Functions Associated with Modified Sigmoid Function, Bull. Malays. Math. Sci. Soc. 43 (1), 957–991, 2020.
  • [7] P. Gupta, S. Nagpal and V. Ravichandran, Inclusion relations and radius problems for a subclass of starlike functions, J. Korean Math. Soc. 58 (5), 1147–1180, 2021.
  • [8] H. Hagen, Curve and surface design, Geometric Design Publications, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992.
  • [9] R. Kanaga and V. Ravichandran, Starlikeness for certain close-to-star functions, Hacet. J. Math. Stat. 50 (2), 414–432, 2021.
  • [10] R. Kargar, A. Ebadian and J. Sokół, On Booth lemniscate and starlike functions, Anal. Math. Phys. 9 (1), 143–154, 2019
  • [11] F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20, 8–12, 1969.
  • [12] K. Khatter, V. Ravichandran and S. Sivaprasad Kumar, Starlike functions associated with exponential function and the lemniscate of Bernoulli, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113 (1), 233–253, 2019.
  • [13] S. S. Kumar and G. Kamaljeet, A cardioid domain and starlike functions, Anal. Math. Phys. 11 (2), 54, 2021.
  • [14] S. S. Kumar and Kush Arora, Starlike Functions associated with a Petal Shaped Domain, arXiv: 2010.10072, 15 pages, 2020.(accepted in BKMS)
  • [15] S. Kumar and V. Ravichandran, A subclass of starlike functions associated with a rational function, Southeast Asian Bull. Math. 40 (2), 199–212, 2016.
  • [16] J. D. Lawrence, A catalog of special plane curves, Dover Publications, 1972.
  • [17] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA. 157–169, Tianjin, 1992.
  • [18] T. H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc. 104, 532–537, 1962.
  • [19] T. H. MacGregor, The radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 14, 514–520, 1963.
  • [20] T. H. MacGregor, The radius of univalence of certain analytic functions, Proc Amer. Math. Soc. 14, 521–524, 1963.
  • [21] J. S. Madachy, Madachy’s Mathematical Recreations, New York: Dover, pp. 219-225, 1979.
  • [22] R. Mendiratta, S. Nagpal and V. Ravichandran, A subclass of starlike functions associated with left-half of the lemniscate of Bernoulli, Internat. J. Math. 25 (9), 1450090, 17 pp ,2014.
  • [23] R. Mendiratta, S. Nagpal and V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc. 38 (1), 365–386, 2015.
  • [24] D. V. Prokhorov and J. Szynal, Inverse coefficients for $(\alpha,\beta )$-convex functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 35 (1981), 125–143, 1984.
  • [25] R. K. Raina and J. Sokół, Some properties related to a certain class of starlike functions, C. R. Math. Acad. Sci. Paris 353 (11), 973–978, 2015.
  • [26] V. Ravichandran and S. Verma, Bound for the fifth coefficient of certain starlike functions, C. R. Math. Acad. Sci. Paris 353 (6), 505–510, 2015.
  • [27] K. Sharma, N. K. Jain and V. Ravichandran, Starlike functions associated with a cardioid, Afr. Mat. 27 (5-6), 923–939, 2016.
  • [28] P. Sharma, R. K. Raina and J. Sokół, Certain Ma–Minda type classes of analytic functions associated with the crescent-shaped region, Anal. Math. Phys. 9 (4), 1887– 1903, 2019.
  • [29] R. Singh, On a class of star-like functions, Compositio Math. 19, 78–82, 1967.
  • [30] J. Sokół and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat. 19, 101–105, 1996.
  • [31] J. Sokół, On some subclass of strongly starlike functions, Demonstratio Math. 31 (1), 81–86, 1998.
  • [32] B. A. Uralegaddi, M. D. Ganigi and S. M. Sarangi, Univalent functions with positive coefficients, Tamkang J. Math. 25 (3), 225–230, 1994.
  • [33] L. A. Wani and A. Swaminathan, Radius problems for functions associated with a nephroid domain, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (4), 178, 2020.
  • [34] Y. Yunus, S. A. Halim and A. B. Akbarally, Subclass of starlike functions associated with a limacon, AIP Conference Proceedings, AIP Publishing 1974 (1), 2018.
There are 34 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Shweta Gandhi This is me 0000-0001-8788-8169

Prachi Gupta This is me 0000-0002-5946-1480

Sumıt Nagpal 0000-0003-4576-4349

V Ravichandran 0000-0002-3632-7529

Publication Date December 1, 2022
Published in Issue Year 2022 Volume: 51 Issue: 6

Cite

APA Gandhi, S., Gupta, P., Nagpal, S., Ravichandran, V. (2022). Starlike functions associated with an epicycloid. Hacettepe Journal of Mathematics and Statistics, 51(6), 1637-1660. https://doi.org/10.15672/hujms.1019973
AMA Gandhi S, Gupta P, Nagpal S, Ravichandran V. Starlike functions associated with an epicycloid. Hacettepe Journal of Mathematics and Statistics. December 2022;51(6):1637-1660. doi:10.15672/hujms.1019973
Chicago Gandhi, Shweta, Prachi Gupta, Sumıt Nagpal, and V Ravichandran. “Starlike Functions Associated With an Epicycloid”. Hacettepe Journal of Mathematics and Statistics 51, no. 6 (December 2022): 1637-60. https://doi.org/10.15672/hujms.1019973.
EndNote Gandhi S, Gupta P, Nagpal S, Ravichandran V (December 1, 2022) Starlike functions associated with an epicycloid. Hacettepe Journal of Mathematics and Statistics 51 6 1637–1660.
IEEE S. Gandhi, P. Gupta, S. Nagpal, and V. Ravichandran, “Starlike functions associated with an epicycloid”, Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 6, pp. 1637–1660, 2022, doi: 10.15672/hujms.1019973.
ISNAD Gandhi, Shweta et al. “Starlike Functions Associated With an Epicycloid”. Hacettepe Journal of Mathematics and Statistics 51/6 (December 2022), 1637-1660. https://doi.org/10.15672/hujms.1019973.
JAMA Gandhi S, Gupta P, Nagpal S, Ravichandran V. Starlike functions associated with an epicycloid. Hacettepe Journal of Mathematics and Statistics. 2022;51:1637–1660.
MLA Gandhi, Shweta et al. “Starlike Functions Associated With an Epicycloid”. Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 6, 2022, pp. 1637-60, doi:10.15672/hujms.1019973.
Vancouver Gandhi S, Gupta P, Nagpal S, Ravichandran V. Starlike functions associated with an epicycloid. Hacettepe Journal of Mathematics and Statistics. 2022;51(6):1637-60.

Cited By