Research Article
BibTex RIS Cite
Year 2022, Volume: 51 Issue: 6, 1752 - 1767, 01.12.2022
https://doi.org/10.15672/hujms.988054

Abstract

References

  • [1] N. Akdam, I. Kinaci and B. Saracoglu, Statistical inference of stress-strength reliability for the exponential power (EP) distribution based on progressive Type-II censored samples, Hacet. J. Math. Stat. 46 (2), 239–253, 2017.
  • [2] N. Balakrishnan and E. Cramer, The Art of Progressive Censoring, Birkhäuser, New York, 2014.
  • [3] N. Balakrishnan and R. Aggarwala, Progressive Censoring: Theory, Methods, and Applications, Berkhauser, Boston, 2000.
  • [4] R.A.R. Bantan, C. Chesneau, F. Jamal, M. Elgarhy, M.H. Tahir, A. Ali, M. Zubair and S. Anam, Some new facts about the Unit-Rayleigh distribution with applications, Mathematics 8 (11), 1954, 2020.
  • [5] O.E. Barndorff-Nielsen and D.R. Cox, Inference and Asymptotics, Routledge, Boca Raton, 2017.
  • [6] I. Basak, P. Basak and N. Balakrishnan, On some predictors of times to failure of censored items in progressively censored samples, Comput. Stat. Data. An. 50 (5), 1313–1337, 2006.
  • [7] O.M. Bdair, R.R.A. Awwad, G.K. Abufoudeh and M.F.M. Nasser, Estimation and prediction for flexible Weibull distribution based on progressive Type-II censored data, Commun. Math. Stat. 8 (3), 255–277, 2020.
  • [8] S. Dey, M. Nassar, R.K. Maurya and Y.M. Tripathi, Estimation and prediction of Marshall-Olkin Extended Exponential distribution under progressively Type-II censored data, J. Stat. Comput. Sim. 88 (12), 2287–2308, 2018.
  • [9] S. Gao, J. Yu and W. Gui, Pivotal inference for the Inverted Exponentiated Rayleigh distribution based on progressive Type-II censored data, Am. J. Math. Manage. 39 (4), 315–328, 2020.
  • [10] A.A. Ismail, Likelihood and Bayesian estimations for step-stress life test model under Type-I censoring, Hacet. J. Math. Stat. 44 (5), 1235–1245, 2015.
  • [11] M.K. Jha, Y.M. Tripathi and S. Dey, Multicomponent stress-strength reliability estimation based on Unit-Generalized Rayleigh distribution, Int. J. Qual. Reliability Manag., 2021.
  • [12] T. Kayal, Y.M. Tripathi and M.K. Rastogi, Estimation and prediction for an Inverted Exponentiated Rayleigh distribution under hybrid censoring, Commun. Stat-Theor. M. 47 (7), 1615–1640, 2018.
  • [13] A. Koley and D. Kundu, Analysis of progressive Type-II censoring in presence of competing risk data under step stress modeling, Stat. Neerl. 75 (2), 115–136, 2021.
  • [14] K. Maiti and S. Kayal, Estimation of parameters and reliability characteristics for a generalized Rayleigh distribution under progressive Type-II censored sample, Commun. Stat-Simul. Comput. 50 (11) 3669–3698, 2021.
  • [15] J. Mazucheli, A.F.B. Menezes and S. Dey, The Unit-Birnbaum-Saunders distribution with applications, Chil. J. Stat. 9 (1), 47–57, 2018.
  • [16] K. Modi and V. Gill, Unit-Burr-III distribution with application, J. Stat. Manag. Syst. 23 (3), 579–592, 2020.
  • [17] M.J. Schervish, Theory of Statistics, Springer Science & Business Media, 2012.
  • [18] J.I. Seo and S.B. Kang, Two-parameter half-logistic distribution using pivotal quantities under progressively Type-II censoring schemes, Commun. Stat-Simul. Comput. 46 (7), 5462–5478, 2017.
  • [19] M.A. Stephens, Tests for the Exponential Distribution. In Goodness-of-Fit Techniques, Eds. R.B. D’Agostinho, M.A. Stephens, Marcel Dekker, New York, 1986.
  • [20] R. Viveros and N. Balakrishnan, Interval estimation of parameters of life from progressively censored data, Technometrics 36 (1), 84–91, 1994.
  • [21] S. Weerahandi, Generalized Inference in Repeated Measures: Exact Methods in MANOVA and Mixed Models, John Wiley and Sons, New Jersey, 2004.
  • [22] J. Xu and J.S Long, Using the delta method to construct confidence intervals for predicted probabilities, rates, and discrete changes, Stata. J., 2005.
  • [23] Y. Zhu, Optimal design and equivalency of accelerated life testing plans, PhD thesis, State University of New Jersey, 2010.

Inference and prediction of progressive Type-II censored data from Unit-Generalized Rayleigh distribution

Year 2022, Volume: 51 Issue: 6, 1752 - 1767, 01.12.2022
https://doi.org/10.15672/hujms.988054

Abstract

In this paper, inference and prediction problems are studied under progressively Type-II censored data. When the latent lifetime follows the Unit-Generalized Rayleigh distribution, maximum likelihood estimators of the unknown parameters are established, and corresponding existence and uniqueness are also provided. Besides, the approximate confidence intervals are constructed based on asymptotic approximation theory. For comparison, another alternative generalized point and interval estimates are constructed based on proposed pivotal quantities. Further, point and interval predictions for the censored samples are established by using conventional classical and generalized inferential approaches. Finally, extensive simulation studies are carried out to investigate the performance of different methods, and one real-life example is presented to illustrate the applicability of the obtained results.

References

  • [1] N. Akdam, I. Kinaci and B. Saracoglu, Statistical inference of stress-strength reliability for the exponential power (EP) distribution based on progressive Type-II censored samples, Hacet. J. Math. Stat. 46 (2), 239–253, 2017.
  • [2] N. Balakrishnan and E. Cramer, The Art of Progressive Censoring, Birkhäuser, New York, 2014.
  • [3] N. Balakrishnan and R. Aggarwala, Progressive Censoring: Theory, Methods, and Applications, Berkhauser, Boston, 2000.
  • [4] R.A.R. Bantan, C. Chesneau, F. Jamal, M. Elgarhy, M.H. Tahir, A. Ali, M. Zubair and S. Anam, Some new facts about the Unit-Rayleigh distribution with applications, Mathematics 8 (11), 1954, 2020.
  • [5] O.E. Barndorff-Nielsen and D.R. Cox, Inference and Asymptotics, Routledge, Boca Raton, 2017.
  • [6] I. Basak, P. Basak and N. Balakrishnan, On some predictors of times to failure of censored items in progressively censored samples, Comput. Stat. Data. An. 50 (5), 1313–1337, 2006.
  • [7] O.M. Bdair, R.R.A. Awwad, G.K. Abufoudeh and M.F.M. Nasser, Estimation and prediction for flexible Weibull distribution based on progressive Type-II censored data, Commun. Math. Stat. 8 (3), 255–277, 2020.
  • [8] S. Dey, M. Nassar, R.K. Maurya and Y.M. Tripathi, Estimation and prediction of Marshall-Olkin Extended Exponential distribution under progressively Type-II censored data, J. Stat. Comput. Sim. 88 (12), 2287–2308, 2018.
  • [9] S. Gao, J. Yu and W. Gui, Pivotal inference for the Inverted Exponentiated Rayleigh distribution based on progressive Type-II censored data, Am. J. Math. Manage. 39 (4), 315–328, 2020.
  • [10] A.A. Ismail, Likelihood and Bayesian estimations for step-stress life test model under Type-I censoring, Hacet. J. Math. Stat. 44 (5), 1235–1245, 2015.
  • [11] M.K. Jha, Y.M. Tripathi and S. Dey, Multicomponent stress-strength reliability estimation based on Unit-Generalized Rayleigh distribution, Int. J. Qual. Reliability Manag., 2021.
  • [12] T. Kayal, Y.M. Tripathi and M.K. Rastogi, Estimation and prediction for an Inverted Exponentiated Rayleigh distribution under hybrid censoring, Commun. Stat-Theor. M. 47 (7), 1615–1640, 2018.
  • [13] A. Koley and D. Kundu, Analysis of progressive Type-II censoring in presence of competing risk data under step stress modeling, Stat. Neerl. 75 (2), 115–136, 2021.
  • [14] K. Maiti and S. Kayal, Estimation of parameters and reliability characteristics for a generalized Rayleigh distribution under progressive Type-II censored sample, Commun. Stat-Simul. Comput. 50 (11) 3669–3698, 2021.
  • [15] J. Mazucheli, A.F.B. Menezes and S. Dey, The Unit-Birnbaum-Saunders distribution with applications, Chil. J. Stat. 9 (1), 47–57, 2018.
  • [16] K. Modi and V. Gill, Unit-Burr-III distribution with application, J. Stat. Manag. Syst. 23 (3), 579–592, 2020.
  • [17] M.J. Schervish, Theory of Statistics, Springer Science & Business Media, 2012.
  • [18] J.I. Seo and S.B. Kang, Two-parameter half-logistic distribution using pivotal quantities under progressively Type-II censoring schemes, Commun. Stat-Simul. Comput. 46 (7), 5462–5478, 2017.
  • [19] M.A. Stephens, Tests for the Exponential Distribution. In Goodness-of-Fit Techniques, Eds. R.B. D’Agostinho, M.A. Stephens, Marcel Dekker, New York, 1986.
  • [20] R. Viveros and N. Balakrishnan, Interval estimation of parameters of life from progressively censored data, Technometrics 36 (1), 84–91, 1994.
  • [21] S. Weerahandi, Generalized Inference in Repeated Measures: Exact Methods in MANOVA and Mixed Models, John Wiley and Sons, New Jersey, 2004.
  • [22] J. Xu and J.S Long, Using the delta method to construct confidence intervals for predicted probabilities, rates, and discrete changes, Stata. J., 2005.
  • [23] Y. Zhu, Optimal design and equivalency of accelerated life testing plans, PhD thesis, State University of New Jersey, 2010.
There are 23 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Statistics
Authors

Liang Wang 0000-0002-2600-5112

Ke Wu 0000-0002-5132-684X

Xuanjia Zuo This is me 0000-0002-9087-4275

Publication Date December 1, 2022
Published in Issue Year 2022 Volume: 51 Issue: 6

Cite

APA Wang, L., Wu, K., & Zuo, X. (2022). Inference and prediction of progressive Type-II censored data from Unit-Generalized Rayleigh distribution. Hacettepe Journal of Mathematics and Statistics, 51(6), 1752-1767. https://doi.org/10.15672/hujms.988054
AMA Wang L, Wu K, Zuo X. Inference and prediction of progressive Type-II censored data from Unit-Generalized Rayleigh distribution. Hacettepe Journal of Mathematics and Statistics. December 2022;51(6):1752-1767. doi:10.15672/hujms.988054
Chicago Wang, Liang, Ke Wu, and Xuanjia Zuo. “Inference and Prediction of Progressive Type-II Censored Data from Unit-Generalized Rayleigh Distribution”. Hacettepe Journal of Mathematics and Statistics 51, no. 6 (December 2022): 1752-67. https://doi.org/10.15672/hujms.988054.
EndNote Wang L, Wu K, Zuo X (December 1, 2022) Inference and prediction of progressive Type-II censored data from Unit-Generalized Rayleigh distribution. Hacettepe Journal of Mathematics and Statistics 51 6 1752–1767.
IEEE L. Wang, K. Wu, and X. Zuo, “Inference and prediction of progressive Type-II censored data from Unit-Generalized Rayleigh distribution”, Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 6, pp. 1752–1767, 2022, doi: 10.15672/hujms.988054.
ISNAD Wang, Liang et al. “Inference and Prediction of Progressive Type-II Censored Data from Unit-Generalized Rayleigh Distribution”. Hacettepe Journal of Mathematics and Statistics 51/6 (December 2022), 1752-1767. https://doi.org/10.15672/hujms.988054.
JAMA Wang L, Wu K, Zuo X. Inference and prediction of progressive Type-II censored data from Unit-Generalized Rayleigh distribution. Hacettepe Journal of Mathematics and Statistics. 2022;51:1752–1767.
MLA Wang, Liang et al. “Inference and Prediction of Progressive Type-II Censored Data from Unit-Generalized Rayleigh Distribution”. Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 6, 2022, pp. 1752-67, doi:10.15672/hujms.988054.
Vancouver Wang L, Wu K, Zuo X. Inference and prediction of progressive Type-II censored data from Unit-Generalized Rayleigh distribution. Hacettepe Journal of Mathematics and Statistics. 2022;51(6):1752-67.