Research Article
BibTex RIS Cite
Year 2023, Volume: 52 Issue: 1, 171 - 184, 15.02.2023
https://doi.org/10.15672/hujms.1088506

Abstract

References

  • [1] R. Ameri, M. Norouzi, Prime and primary hyperideals in Krasner $(m,n)$-hyperrings, European J. Combin. 34, 379-390, 2013.
  • [2] M. Anbarloei, $n$-ary 2-absorbing and 2-absorbing primary hyperideals in Krasner $(m,n)$-hyperrings, Matematicki Vesnik 71 (3), 250-262, 2019.
  • [3] M. Anbarloei, Unifing the prime and primary hyperideals under one frame in a Krasner $(m,n)$-hyperring, Commun. Algebra 49, 3432-3446, 2021.
  • [4] A. Asadi, R. Ameri, Direct limit of Krasner $(m,n)$-hyperrings, Journal of Sciences 31 (1), 75-83, 2020.
  • [5] G. Crombez, On $(m,n)$- rings, Abh. Math. Semin. Univ., Hamburg 37, 180-199, 1972.
  • [6] G. Crombez, J. Timm, On $(m,n)$-quotient rings, Abh. Math. Semin. Univ., Hamburg 37, 200-203, 1972.
  • [7] S. Corsini, Prolegomena of hypergroup theory, Second edition, Aviani editor, Italy, 1993.
  • [8] S. Corsini, V. Leoreanu, Applications of hyperstructure theory, Advances in Mathematics, vol. 5, Kluwer Academic Publishers, 2003.
  • [9] B. Davvaz, V. Leoreanu-Fotea, Hyperring Theory and Applications, International Academic Press, Palm Harbor, USA, 2007.
  • [10] B. Davvaz, T. Vougiouklis, n-ary hypergroups, Iran. J. Sci. Technol. 30 (A2), 165-174, 2006.
  • [11] Z. Dongsheng, $\delta$-primary ideals of commutative rings, Kyungpook Math. J. 41, 17-22, 2001.
  • [12] W. Dorente, Untersuchungen über einen verallgemeinerten Gruppenbegriff, Math. Z. 29, 1-19, 1928.
  • [13] B. Fahid, Z. Dongsheng, 2-Absorbing $\delta$-primary ideals of commutative rings, Kyungpook Math. J. 57, 193-198, 2017.
  • [14] K. Hila, K. Naka, B. Davvaz, On $(k, n)$-absorbing hyperideals in Krasner $(m, n)$-hyperrings, Q. J. Math. 69, 1035-1046, 2018.
  • [15] E. Kasner, An extension of the group concept (reported by L.G. Weld), Bull. Amer. Math. Soc. 10, 290-291, 1904.
  • [16] H. A. Khashan, A. B. Bani-Ata, J-ideals of commutative rings, International Electronic J. Algebra 29, 148-164, 2021.
  • [17] V. Leoreanu, Canonical n-ary hypergroups, Ital. J. Pure Appl. Math. 24, 2008.
  • [18] V. Leoreanu-Fotea, B. Davvaz, n-hypergroups and binary relations, European J. Combin. 29, 1027-1218, 2008.
  • [19] V. Leoreanu-Fotea, B. Davvaz, Roughness in n-ary hypergroups, Inform. Sci. 178, 4114-4124, 2008.
  • [20] X. Ma, J. Zhan, B. Davvaz, Applications of rough soft sets to Krasner $(m, n)$- hyperrings and corresponding decision making methods, Filomat 32, 6599-6614, 2018.
  • [21] F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scandenaves, Stockholm, 45-49, 1934.
  • [22] S. Mirvakili, B. Davvaz, Relations on Krasner $(m, n)$-hyperrings, European J. Combin. 31, 790-802, 2010.
  • [23] S. Mirvakili, B. Davvaz, Constructions of $(m, n)$-hyperrings, Matematicki Vesnik 67 (1), 1-16, 2015.
  • [24] M. Norouzi, R.Ameri, V. Leoreanu-Fotea, Normal hyperideals in Krasner $(m, n)$- hyperrings, An. St. Univ. Ovidius Constanta 26 (3), 197-211, 2018.
  • [25] S. Omidi, B. Davvaz, Contribution to study special kinds of hyperideals in ordered semihyperrings, J. Taibah Univ. Sci. 11, 1083-1094, 2017.
  • [26] S. Ostadhadi-Dehkordi, B. Davvaz, A Note on Isomorphism Theorems of Krasner (m, n)- hyperrings, Arab. J. Math. 5, 103-115, 2016.
  • [27] E. Ozel Ay, G. Yesilot, D. Sonmez, $\delta$-Primary Hyperideals on Commutative Hyperrings, Int. J. Math. Math. Sci, Article ID 5428160, 4 pages, 2017.
  • [28] T. Vougiouklis, Hyperstructures and their representations, Hadronic Press Inc., Florida, 1994.
  • [29] J. Zhan, B. Davvaz, K.P. Shum, Generalized fuzzy hyperideals of hyperrings, Comput. Math. Appl. 56, 1732-1740, 2008.

$J$-hyperideals and their expansions in a Krasner $(m,n)$-hyperring

Year 2023, Volume: 52 Issue: 1, 171 - 184, 15.02.2023
https://doi.org/10.15672/hujms.1088506

Abstract

Over the years, different types of hyperideals have been introduced in order to let us fully realize the structures of hyperrings in general. The aim of this research work is to define and characterize a new class of hyperideals in a Krasner $(m,n)$-hyperring that we call n-ary $J$-hyperideals. A proper hyperideal $Q$ of a Krasner $(m,n)$-hyperring with the scalar identity $1_R$ is said to be an n-ary $J$-hyperideal if whenever $x_1^n \in R$ such that $g(x_1^n) \in Q$ and $x_i \notin J_{(m,n)}(R)$, then $g(x_1^{i-1},1_R,x_{i+1}^n) \in Q$. Also, we study the concept of n-ary $\delta$-$J$-hyperideals as an expansion of n-ary $J$-hyperideals. Finally, we extend the notion of n-ary $\delta$-$J$-hyperideals to $(k,n)$-absorbing $\delta$-$J$-hyperideals. Let $\delta$ be a hyperideal expansion of a Krasner $(m,n)$-hyperring $R$ and $k$ be a positive integer. A proper hyperideal $Q$ of $R$ is called $(k,n)$-absorbing $\delta$-$J$-hyperideal if for $x_1^{kn-k+1} \in R$, $g(x_1^{kn-k+1}) \in Q$ implies that $g(x_1^{(k-1)n-k+2}) \in J_{(m,n)}(R)$ or a $g$-product of $(k-1)n-k+2$ of $x_i^,$ s except $g(x_1^{(k-1)n-k+2})$ is in $\delta(Q)$.

References

  • [1] R. Ameri, M. Norouzi, Prime and primary hyperideals in Krasner $(m,n)$-hyperrings, European J. Combin. 34, 379-390, 2013.
  • [2] M. Anbarloei, $n$-ary 2-absorbing and 2-absorbing primary hyperideals in Krasner $(m,n)$-hyperrings, Matematicki Vesnik 71 (3), 250-262, 2019.
  • [3] M. Anbarloei, Unifing the prime and primary hyperideals under one frame in a Krasner $(m,n)$-hyperring, Commun. Algebra 49, 3432-3446, 2021.
  • [4] A. Asadi, R. Ameri, Direct limit of Krasner $(m,n)$-hyperrings, Journal of Sciences 31 (1), 75-83, 2020.
  • [5] G. Crombez, On $(m,n)$- rings, Abh. Math. Semin. Univ., Hamburg 37, 180-199, 1972.
  • [6] G. Crombez, J. Timm, On $(m,n)$-quotient rings, Abh. Math. Semin. Univ., Hamburg 37, 200-203, 1972.
  • [7] S. Corsini, Prolegomena of hypergroup theory, Second edition, Aviani editor, Italy, 1993.
  • [8] S. Corsini, V. Leoreanu, Applications of hyperstructure theory, Advances in Mathematics, vol. 5, Kluwer Academic Publishers, 2003.
  • [9] B. Davvaz, V. Leoreanu-Fotea, Hyperring Theory and Applications, International Academic Press, Palm Harbor, USA, 2007.
  • [10] B. Davvaz, T. Vougiouklis, n-ary hypergroups, Iran. J. Sci. Technol. 30 (A2), 165-174, 2006.
  • [11] Z. Dongsheng, $\delta$-primary ideals of commutative rings, Kyungpook Math. J. 41, 17-22, 2001.
  • [12] W. Dorente, Untersuchungen über einen verallgemeinerten Gruppenbegriff, Math. Z. 29, 1-19, 1928.
  • [13] B. Fahid, Z. Dongsheng, 2-Absorbing $\delta$-primary ideals of commutative rings, Kyungpook Math. J. 57, 193-198, 2017.
  • [14] K. Hila, K. Naka, B. Davvaz, On $(k, n)$-absorbing hyperideals in Krasner $(m, n)$-hyperrings, Q. J. Math. 69, 1035-1046, 2018.
  • [15] E. Kasner, An extension of the group concept (reported by L.G. Weld), Bull. Amer. Math. Soc. 10, 290-291, 1904.
  • [16] H. A. Khashan, A. B. Bani-Ata, J-ideals of commutative rings, International Electronic J. Algebra 29, 148-164, 2021.
  • [17] V. Leoreanu, Canonical n-ary hypergroups, Ital. J. Pure Appl. Math. 24, 2008.
  • [18] V. Leoreanu-Fotea, B. Davvaz, n-hypergroups and binary relations, European J. Combin. 29, 1027-1218, 2008.
  • [19] V. Leoreanu-Fotea, B. Davvaz, Roughness in n-ary hypergroups, Inform. Sci. 178, 4114-4124, 2008.
  • [20] X. Ma, J. Zhan, B. Davvaz, Applications of rough soft sets to Krasner $(m, n)$- hyperrings and corresponding decision making methods, Filomat 32, 6599-6614, 2018.
  • [21] F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scandenaves, Stockholm, 45-49, 1934.
  • [22] S. Mirvakili, B. Davvaz, Relations on Krasner $(m, n)$-hyperrings, European J. Combin. 31, 790-802, 2010.
  • [23] S. Mirvakili, B. Davvaz, Constructions of $(m, n)$-hyperrings, Matematicki Vesnik 67 (1), 1-16, 2015.
  • [24] M. Norouzi, R.Ameri, V. Leoreanu-Fotea, Normal hyperideals in Krasner $(m, n)$- hyperrings, An. St. Univ. Ovidius Constanta 26 (3), 197-211, 2018.
  • [25] S. Omidi, B. Davvaz, Contribution to study special kinds of hyperideals in ordered semihyperrings, J. Taibah Univ. Sci. 11, 1083-1094, 2017.
  • [26] S. Ostadhadi-Dehkordi, B. Davvaz, A Note on Isomorphism Theorems of Krasner (m, n)- hyperrings, Arab. J. Math. 5, 103-115, 2016.
  • [27] E. Ozel Ay, G. Yesilot, D. Sonmez, $\delta$-Primary Hyperideals on Commutative Hyperrings, Int. J. Math. Math. Sci, Article ID 5428160, 4 pages, 2017.
  • [28] T. Vougiouklis, Hyperstructures and their representations, Hadronic Press Inc., Florida, 1994.
  • [29] J. Zhan, B. Davvaz, K.P. Shum, Generalized fuzzy hyperideals of hyperrings, Comput. Math. Appl. 56, 1732-1740, 2008.
There are 29 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Mahdi Anbarloei 0000-0003-3260-2316

Publication Date February 15, 2023
Published in Issue Year 2023 Volume: 52 Issue: 1

Cite

APA Anbarloei, M. (2023). $J$-hyperideals and their expansions in a Krasner $(m,n)$-hyperring. Hacettepe Journal of Mathematics and Statistics, 52(1), 171-184. https://doi.org/10.15672/hujms.1088506
AMA Anbarloei M. $J$-hyperideals and their expansions in a Krasner $(m,n)$-hyperring. Hacettepe Journal of Mathematics and Statistics. February 2023;52(1):171-184. doi:10.15672/hujms.1088506
Chicago Anbarloei, Mahdi. “$J$-Hyperideals and Their Expansions in a Krasner $(m,n)$-Hyperring”. Hacettepe Journal of Mathematics and Statistics 52, no. 1 (February 2023): 171-84. https://doi.org/10.15672/hujms.1088506.
EndNote Anbarloei M (February 1, 2023) $J$-hyperideals and their expansions in a Krasner $(m,n)$-hyperring. Hacettepe Journal of Mathematics and Statistics 52 1 171–184.
IEEE M. Anbarloei, “$J$-hyperideals and their expansions in a Krasner $(m,n)$-hyperring”, Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 1, pp. 171–184, 2023, doi: 10.15672/hujms.1088506.
ISNAD Anbarloei, Mahdi. “$J$-Hyperideals and Their Expansions in a Krasner $(m,n)$-Hyperring”. Hacettepe Journal of Mathematics and Statistics 52/1 (February 2023), 171-184. https://doi.org/10.15672/hujms.1088506.
JAMA Anbarloei M. $J$-hyperideals and their expansions in a Krasner $(m,n)$-hyperring. Hacettepe Journal of Mathematics and Statistics. 2023;52:171–184.
MLA Anbarloei, Mahdi. “$J$-Hyperideals and Their Expansions in a Krasner $(m,n)$-Hyperring”. Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 1, 2023, pp. 171-84, doi:10.15672/hujms.1088506.
Vancouver Anbarloei M. $J$-hyperideals and their expansions in a Krasner $(m,n)$-hyperring. Hacettepe Journal of Mathematics and Statistics. 2023;52(1):171-84.