Research Article
BibTex RIS Cite
Year 2023, Volume: 52 Issue: 1, 17 - 22, 15.02.2023
https://doi.org/10.15672/hujms.1099250

Abstract

References

  • [1] M. Abramowitz and I. A. Stegun (Eds), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 10th printing, Washington, 1972.
  • [2] J. A. Adell and A. Lekuona, Dirichlet’s eta and beta functions: concavity and fast computation of their derivatives, J. Number Theory 157, 215–222, 2015.
  • [3] J. M. Borwein, D. H. Bailey, and R. Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, A K Peters, Ltd., Natick, MA, 2004.
  • [4] B.-N. Guo and F. Qi, Increasing property and logarithmic convexity of functions involving Riemann zeta function, https://arxiv.org/abs/2201.06970, 2022.
  • [5] Kh. Hessami Pilehrood and T. Hessami Pilehrood, Series acceleration formulas for beta values, Discrete Math. Theor. Comput. Sci. 12 (2), 223–236, 2010.
  • [6] D. Lim and F. Qi, Increasing property and logarithmic convexity of two functions involving Dirichlet eta function, J. Math. Inequal. 16 (2), 463–469, 2022.
  • [7] F. Qi, Notes on a double inequality for ratios of any two neighbouring non-zero Bernoulli numbers, Turkish J. Anal. Number Theory 6 (5), 129–131, 2018.
  • [8] F. Qi, A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers, J. Comput. Appl. Math. 351, 1–5, 2019.
  • [9] F. Qi, Decreasing properties of two ratios defined by three and four polygamma functions, C. R. Math. Acad. Sci. Paris 360, 89–101, 2022.
  • [10] F. Qi, W.-H. Li, S.-B. Yu, X.-Y. Du, and B.-N. Guo, A ratio of finitely many gamma functions and its properties with applications, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM. 115 (2), 2021.
  • [11] Y. Shuang, B.-N. Guo, and F. Qi, Logarithmic convexity and increasing property of the Bernoulli numbers and their ratios, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115 (3), 2021.
  • [12] N. M. Temme, Special Functions: An Introduction to Classical Functions of Mathematical Physics, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1996.
  • [13] C.-F. Wei, Integral representations and inequalities of extended central binomial coefficients, Math. Methods Appl. Sci. 45 (9), 5412–5422, 2022.
  • [14] Z.-H. Yang and J.-F. Tian, Sharp bounds for the ratio of two zeta functions, J. Comput. Appl. Math. 364, 112359, 2020.
  • [15] L. Zhu, New bounds for the ratio of two adjacent even-indexed Bernoulli numbers, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (2), 2020.

Increasing property and logarithmic convexity concerning Dirichlet beta function, Euler numbers, and their ratios

Year 2023, Volume: 52 Issue: 1, 17 - 22, 15.02.2023
https://doi.org/10.15672/hujms.1099250

Abstract

In the paper, by virtue of an integral representation of the Dirichlet beta function, with the aid of a relation between the Dirichlet beta function and the Euler numbers, and by means of a monotonicity rule for the ratio of two definite integrals with a parameter, the author finds increasing property and logarithmic convexity of two functions and two sequences involving the Dirichlet beta function, the Euler numbers, and their ratios.

References

  • [1] M. Abramowitz and I. A. Stegun (Eds), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 10th printing, Washington, 1972.
  • [2] J. A. Adell and A. Lekuona, Dirichlet’s eta and beta functions: concavity and fast computation of their derivatives, J. Number Theory 157, 215–222, 2015.
  • [3] J. M. Borwein, D. H. Bailey, and R. Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, A K Peters, Ltd., Natick, MA, 2004.
  • [4] B.-N. Guo and F. Qi, Increasing property and logarithmic convexity of functions involving Riemann zeta function, https://arxiv.org/abs/2201.06970, 2022.
  • [5] Kh. Hessami Pilehrood and T. Hessami Pilehrood, Series acceleration formulas for beta values, Discrete Math. Theor. Comput. Sci. 12 (2), 223–236, 2010.
  • [6] D. Lim and F. Qi, Increasing property and logarithmic convexity of two functions involving Dirichlet eta function, J. Math. Inequal. 16 (2), 463–469, 2022.
  • [7] F. Qi, Notes on a double inequality for ratios of any two neighbouring non-zero Bernoulli numbers, Turkish J. Anal. Number Theory 6 (5), 129–131, 2018.
  • [8] F. Qi, A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers, J. Comput. Appl. Math. 351, 1–5, 2019.
  • [9] F. Qi, Decreasing properties of two ratios defined by three and four polygamma functions, C. R. Math. Acad. Sci. Paris 360, 89–101, 2022.
  • [10] F. Qi, W.-H. Li, S.-B. Yu, X.-Y. Du, and B.-N. Guo, A ratio of finitely many gamma functions and its properties with applications, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM. 115 (2), 2021.
  • [11] Y. Shuang, B.-N. Guo, and F. Qi, Logarithmic convexity and increasing property of the Bernoulli numbers and their ratios, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115 (3), 2021.
  • [12] N. M. Temme, Special Functions: An Introduction to Classical Functions of Mathematical Physics, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1996.
  • [13] C.-F. Wei, Integral representations and inequalities of extended central binomial coefficients, Math. Methods Appl. Sci. 45 (9), 5412–5422, 2022.
  • [14] Z.-H. Yang and J.-F. Tian, Sharp bounds for the ratio of two zeta functions, J. Comput. Appl. Math. 364, 112359, 2020.
  • [15] L. Zhu, New bounds for the ratio of two adjacent even-indexed Bernoulli numbers, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (2), 2020.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Feng Qi 0000-0001-6239-2968

Yong-hong Yao 0000-0002-0452-785X

Publication Date February 15, 2023
Published in Issue Year 2023 Volume: 52 Issue: 1

Cite

APA Qi, F., & Yao, Y.-h. (2023). Increasing property and logarithmic convexity concerning Dirichlet beta function, Euler numbers, and their ratios. Hacettepe Journal of Mathematics and Statistics, 52(1), 17-22. https://doi.org/10.15672/hujms.1099250
AMA Qi F, Yao Yh. Increasing property and logarithmic convexity concerning Dirichlet beta function, Euler numbers, and their ratios. Hacettepe Journal of Mathematics and Statistics. February 2023;52(1):17-22. doi:10.15672/hujms.1099250
Chicago Qi, Feng, and Yong-hong Yao. “Increasing Property and Logarithmic Convexity Concerning Dirichlet Beta Function, Euler Numbers, and Their Ratios”. Hacettepe Journal of Mathematics and Statistics 52, no. 1 (February 2023): 17-22. https://doi.org/10.15672/hujms.1099250.
EndNote Qi F, Yao Y-h (February 1, 2023) Increasing property and logarithmic convexity concerning Dirichlet beta function, Euler numbers, and their ratios. Hacettepe Journal of Mathematics and Statistics 52 1 17–22.
IEEE F. Qi and Y.-h. Yao, “Increasing property and logarithmic convexity concerning Dirichlet beta function, Euler numbers, and their ratios”, Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 1, pp. 17–22, 2023, doi: 10.15672/hujms.1099250.
ISNAD Qi, Feng - Yao, Yong-hong. “Increasing Property and Logarithmic Convexity Concerning Dirichlet Beta Function, Euler Numbers, and Their Ratios”. Hacettepe Journal of Mathematics and Statistics 52/1 (February 2023), 17-22. https://doi.org/10.15672/hujms.1099250.
JAMA Qi F, Yao Y-h. Increasing property and logarithmic convexity concerning Dirichlet beta function, Euler numbers, and their ratios. Hacettepe Journal of Mathematics and Statistics. 2023;52:17–22.
MLA Qi, Feng and Yong-hong Yao. “Increasing Property and Logarithmic Convexity Concerning Dirichlet Beta Function, Euler Numbers, and Their Ratios”. Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 1, 2023, pp. 17-22, doi:10.15672/hujms.1099250.
Vancouver Qi F, Yao Y-h. Increasing property and logarithmic convexity concerning Dirichlet beta function, Euler numbers, and their ratios. Hacettepe Journal of Mathematics and Statistics. 2023;52(1):17-22.