Fixed Points of MultiValued Mapping Satisfying Ciric Type Contractive Conditions in G-Metric Spaces ABSTRACT | FULL TEXT
Year 2013,
Volume: 42 Issue: 1, 21 - 29, 01.01.2013
Mujahid Abbas
Talat Nazır
B. E. Rhoades
Abstract
In this paper, study of necessary conditions for existence of fixed pointof multivalued mappings satisfying Ciric type contractive conditionsin the setting of generalized metric spaces is initiated. Examples tosupport our results are presented. Since every symmetric generalizedmetric reduces to an ordinary metric, we give a new example of a nonsymmetric generalized metric to justify the study of fixed point theoryin generalized metric spaces.
References
- Abbas, M. and Rhoades, B. E. Common fixed point results for non-commuting mappings without continuity in generalized metric spaces, Appl. Math. and Computation 215 , 262– 269, 2009.
- Abbas, M., Rhoades, B. E. and Nazir T. Some periodic point results in generalized metric spaces, Appl. Math. and Computation 217 , 4094-4099, 2010.
- Ciri´ c, Lj.Generalized contractions and fixed-point theorems, Publ. Inst. Math. 12 (26), 19-26.
- Kannan, R. Some results on fixed points, Bull. Calcutta, Math. Soc. 60, 71–76, 1968.
- Latif, A. and Beg, I. Geometric fixed points for single and multivalued mappings, Demons. Math., 30 (4), 791–800, 1997.
- Matkowski, J. Fixed point theorems for mappings with a contractive iterate at a point, Proceedings of the American Mathematical Society, 62(2), 344-348, 1977.
- Rus, I. A., Petrusel A. and Sintamarian A. Data dependence of fixed point set of some multivalued weakly Picard operators, Nonlinear Analysis 52, 1944-1959, 2003.
- Saadati, R., Vaezpour, S. M., Vetro, P. and Rhoades, B. E. Fixed point theorems in generalized partially ordered G− metric spaces, Mathematical and Computer Modelling, in press, 2010.
- Mustafa, Z. and Sims, B. Some remarks concerning D− metric spaces, Proc. Int. Conf. on Fixed Point Theory and Applications, Valencia (Spain), 189–198, 2003.
- Mustafa, Z. and Sims, B. A new approach to generalized metric spaces, J. of Nonlinear and Convex Analysis, 7 (2), 289–297, 2006.
- Mustafa, Z., Obiedat, H. and Awawdehand, F. Some fixed point theorem for mapping on complete G− metric spaces, Fixed Point Theory Appl., 2008, Article ID 189870, 12 pages. Mustafa, Z. and Sims, B. Fixed point theorems for contractive mapping in complete G− metric spaces, Fixed Point Theory Appl., Article ID 917175, 10 pages, 2009.
- Rus, I. A. , Petrusel, A. and Sintamarian, A. Data dependence of fixed point set of some multivalued weakly Picard operators, Nonlinear Analysis 52, 1944–1959, 2003.
- Saadati, R., Vaezpour, S. M., Vetro, P. and Rhoades, B. E. Fixed point theorems in generalized partially ordered G− metric spaces, Math. and Comp. Modelling, 52 (5-6), 797–801, 20
Fixed Points of MultiValued Mapping Satisfying Ciric Type Contractive Conditions in G-Metric Spaces ABSTRACT | FULL TEXT
Year 2013,
Volume: 42 Issue: 1, 21 - 29, 01.01.2013
Mujahid Abbas
Talat Nazır
B. E. Rhoades
References
- Abbas, M. and Rhoades, B. E. Common fixed point results for non-commuting mappings without continuity in generalized metric spaces, Appl. Math. and Computation 215 , 262– 269, 2009.
- Abbas, M., Rhoades, B. E. and Nazir T. Some periodic point results in generalized metric spaces, Appl. Math. and Computation 217 , 4094-4099, 2010.
- Ciri´ c, Lj.Generalized contractions and fixed-point theorems, Publ. Inst. Math. 12 (26), 19-26.
- Kannan, R. Some results on fixed points, Bull. Calcutta, Math. Soc. 60, 71–76, 1968.
- Latif, A. and Beg, I. Geometric fixed points for single and multivalued mappings, Demons. Math., 30 (4), 791–800, 1997.
- Matkowski, J. Fixed point theorems for mappings with a contractive iterate at a point, Proceedings of the American Mathematical Society, 62(2), 344-348, 1977.
- Rus, I. A., Petrusel A. and Sintamarian A. Data dependence of fixed point set of some multivalued weakly Picard operators, Nonlinear Analysis 52, 1944-1959, 2003.
- Saadati, R., Vaezpour, S. M., Vetro, P. and Rhoades, B. E. Fixed point theorems in generalized partially ordered G− metric spaces, Mathematical and Computer Modelling, in press, 2010.
- Mustafa, Z. and Sims, B. Some remarks concerning D− metric spaces, Proc. Int. Conf. on Fixed Point Theory and Applications, Valencia (Spain), 189–198, 2003.
- Mustafa, Z. and Sims, B. A new approach to generalized metric spaces, J. of Nonlinear and Convex Analysis, 7 (2), 289–297, 2006.
- Mustafa, Z., Obiedat, H. and Awawdehand, F. Some fixed point theorem for mapping on complete G− metric spaces, Fixed Point Theory Appl., 2008, Article ID 189870, 12 pages. Mustafa, Z. and Sims, B. Fixed point theorems for contractive mapping in complete G− metric spaces, Fixed Point Theory Appl., Article ID 917175, 10 pages, 2009.
- Rus, I. A. , Petrusel, A. and Sintamarian, A. Data dependence of fixed point set of some multivalued weakly Picard operators, Nonlinear Analysis 52, 1944–1959, 2003.
- Saadati, R., Vaezpour, S. M., Vetro, P. and Rhoades, B. E. Fixed point theorems in generalized partially ordered G− metric spaces, Math. and Comp. Modelling, 52 (5-6), 797–801, 20