BibTex RIS Cite

A Result On Generalized Derivations in Prime Rings ABSTRACT | FULL TEXT

Year 2013, Volume: 42 Issue: 1, 81 - 85, 01.01.2013

Abstract

Let R be a prime ring, H a generalized derivation of R, L a noncentralLie ideal of R, and 0 = a ∈ R. Suppose that aus (H(u))n u t = 0 forall u ∈ L, where s, t ≥ 0 and n > 0 are fixed integers. If s = 0, thenH(x) = bx for all x ∈ R, where b ∈ U , the right Utumi quotient ringof R, with ab = 0 unless R satisfies s, the standard identity in fourvariables. If s > 0, then H = 0 unless R satisfies s.

References

  • Albas, B., Argac, N. and Fillippis, V. D. Generalized derivations with Engel conditions on one-sided ideals, Comm. Algebra 36, 2063-2071, 2008.
  • Albert A. A. and Muckenhoupt, B. On matrices of trace zero Michigan J. Math. 1, 1-3, 1957.
  • Beidar, K. I., Martindale W. S. and Mikhalev, A. V. Rings with Generalized Identities, Marcel Dekker, New York-Basel-Hong Kong, 1996.
  • Chuang, C. L. GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103, 723-728, 1988.
  • Dhara, B. and De Filippis, V. Notes on generalized derivations on Lie ideals in prime rings, Bull. Korean Math. Soc. 46 (3), 599-605, 2009.
  • Dhara, B and Sharma, R. K. Derivations with annihilator conditions in prime rings, Publ. Math. Debrecen 71 (1), 11-20, 2007.
  • Erickson, T. S., Martindale, W S. and Osborn, J. M. Prime nonassociative algebras, Pacific J. Math. 60 (1), 49-63, 1975.
  • Faith, C. and Utumi, Y. On a new proof of Litoff ’s theorem, Acta Math. Acad. Sci. Hung. 14, 369-371, 1963.
  • De Filippis, V. An Engel condition with generalized derivations on multilinear polynomials, Israel J. Math. 162, 93-108, 2007.
  • De Filippis, V. Posner’s second theorem and an annihilator condition with generalized derivations, Turk J. Math. 32, 197-211, 2008.
  • De Filippis, V. Generalized derivations in prime rings and noncommutative Banach algebras, Bull. Korean Math. Soc. 45, 621-629, 2008.
  • Hvala, B. Generalized derivations in rings, Comm. Algebra 26, 1147-1166, 1998. Jacobson, N. Structure of Rings, Amer. Math. Soc. Colloq. Pub., 37, Amer. Math. Soc., Providence, RI, 1964.
  • Kharchenko, V. K. Differential identities of prime rings, Algebra and Logic 17 155-168, 19 Lanski, C. and Montgomery, S. Lie structure of prime rings of characteristic 2, Pacific J. Math. 42, 117-136, 1972.
  • Lee, T. K. Generalized derivations of left faithful rings, Comm. Algebra 27, 4057-4073, 19
  • Lee, T. K. and Lin, J. S. A result on derivations, Proc. Amer. Math. Soc. 124, 16871691, 1996.
  • Lee, T. K. Lee and Shiue, W. K. Identities with generalized derivations, Comm. Algebra 29, 4437-4450, 2001.
  • Lin, J. S. and Liu, C. K. Generalized derivations with invertible or nilpotent on multilinear polynomials values, Comm. Algebra 34, 633-640, 2006.
  • Martindale 3rd, W. S. Prime rings satisfying a generalized polynomial identity, J. Algebra 12, 576-584, 1969.
  • Wang, Y. Generalized derivations with power-central values on multilinear polynomials, Algebra Colloq. 13, 405-410, 2006.
  • Wang, Y. Annihilator conditions with generalized derivations in prime rings, Bull. Korean Math. Soc. 48, 917-922, 2011.

A Result On Generalized Derivations in Prime Rings ABSTRACT | FULL TEXT

Year 2013, Volume: 42 Issue: 1, 81 - 85, 01.01.2013

Abstract

-

References

  • Albas, B., Argac, N. and Fillippis, V. D. Generalized derivations with Engel conditions on one-sided ideals, Comm. Algebra 36, 2063-2071, 2008.
  • Albert A. A. and Muckenhoupt, B. On matrices of trace zero Michigan J. Math. 1, 1-3, 1957.
  • Beidar, K. I., Martindale W. S. and Mikhalev, A. V. Rings with Generalized Identities, Marcel Dekker, New York-Basel-Hong Kong, 1996.
  • Chuang, C. L. GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103, 723-728, 1988.
  • Dhara, B. and De Filippis, V. Notes on generalized derivations on Lie ideals in prime rings, Bull. Korean Math. Soc. 46 (3), 599-605, 2009.
  • Dhara, B and Sharma, R. K. Derivations with annihilator conditions in prime rings, Publ. Math. Debrecen 71 (1), 11-20, 2007.
  • Erickson, T. S., Martindale, W S. and Osborn, J. M. Prime nonassociative algebras, Pacific J. Math. 60 (1), 49-63, 1975.
  • Faith, C. and Utumi, Y. On a new proof of Litoff ’s theorem, Acta Math. Acad. Sci. Hung. 14, 369-371, 1963.
  • De Filippis, V. An Engel condition with generalized derivations on multilinear polynomials, Israel J. Math. 162, 93-108, 2007.
  • De Filippis, V. Posner’s second theorem and an annihilator condition with generalized derivations, Turk J. Math. 32, 197-211, 2008.
  • De Filippis, V. Generalized derivations in prime rings and noncommutative Banach algebras, Bull. Korean Math. Soc. 45, 621-629, 2008.
  • Hvala, B. Generalized derivations in rings, Comm. Algebra 26, 1147-1166, 1998. Jacobson, N. Structure of Rings, Amer. Math. Soc. Colloq. Pub., 37, Amer. Math. Soc., Providence, RI, 1964.
  • Kharchenko, V. K. Differential identities of prime rings, Algebra and Logic 17 155-168, 19 Lanski, C. and Montgomery, S. Lie structure of prime rings of characteristic 2, Pacific J. Math. 42, 117-136, 1972.
  • Lee, T. K. Generalized derivations of left faithful rings, Comm. Algebra 27, 4057-4073, 19
  • Lee, T. K. and Lin, J. S. A result on derivations, Proc. Amer. Math. Soc. 124, 16871691, 1996.
  • Lee, T. K. Lee and Shiue, W. K. Identities with generalized derivations, Comm. Algebra 29, 4437-4450, 2001.
  • Lin, J. S. and Liu, C. K. Generalized derivations with invertible or nilpotent on multilinear polynomials values, Comm. Algebra 34, 633-640, 2006.
  • Martindale 3rd, W. S. Prime rings satisfying a generalized polynomial identity, J. Algebra 12, 576-584, 1969.
  • Wang, Y. Generalized derivations with power-central values on multilinear polynomials, Algebra Colloq. 13, 405-410, 2006.
  • Wang, Y. Annihilator conditions with generalized derivations in prime rings, Bull. Korean Math. Soc. 48, 917-922, 2011.
There are 20 citations in total.

Details

Primary Language Turkish
Journal Section Mathematics
Authors

Yiqiu Du This is me

Yu Wang A Result On Generalized Derivat Statıstıcs This is me

Publication Date January 1, 2013
Published in Issue Year 2013 Volume: 42 Issue: 1

Cite

APA Du, Y., & Statıstıcs, Y. W. . A. R. O. G. D. (2013). A Result On Generalized Derivations in Prime Rings ABSTRACT | FULL TEXT. Hacettepe Journal of Mathematics and Statistics, 42(1), 81-85.
AMA Du Y, Statıstıcs YWAROGD. A Result On Generalized Derivations in Prime Rings ABSTRACT | FULL TEXT. Hacettepe Journal of Mathematics and Statistics. January 2013;42(1):81-85.
Chicago Du, Yiqiu, and Yu Wang A Result On Generalized Derivat Statıstıcs. “A Result On Generalized Derivations in Prime Rings ABSTRACT | FULL TEXT”. Hacettepe Journal of Mathematics and Statistics 42, no. 1 (January 2013): 81-85.
EndNote Du Y, Statıstıcs YWAROGD (January 1, 2013) A Result On Generalized Derivations in Prime Rings ABSTRACT | FULL TEXT. Hacettepe Journal of Mathematics and Statistics 42 1 81–85.
IEEE Y. Du and Y. W. . A. R. O. G. D. Statıstıcs, “A Result On Generalized Derivations in Prime Rings ABSTRACT | FULL TEXT”, Hacettepe Journal of Mathematics and Statistics, vol. 42, no. 1, pp. 81–85, 2013.
ISNAD Du, Yiqiu - Statıstıcs, Yu Wang A Result On Generalized Derivat. “A Result On Generalized Derivations in Prime Rings ABSTRACT | FULL TEXT”. Hacettepe Journal of Mathematics and Statistics 42/1 (January 2013), 81-85.
JAMA Du Y, Statıstıcs YWAROGD. A Result On Generalized Derivations in Prime Rings ABSTRACT | FULL TEXT. Hacettepe Journal of Mathematics and Statistics. 2013;42:81–85.
MLA Du, Yiqiu and Yu Wang A Result On Generalized Derivat Statıstıcs. “A Result On Generalized Derivations in Prime Rings ABSTRACT | FULL TEXT”. Hacettepe Journal of Mathematics and Statistics, vol. 42, no. 1, 2013, pp. 81-85.
Vancouver Du Y, Statıstıcs YWAROGD. A Result On Generalized Derivations in Prime Rings ABSTRACT | FULL TEXT. Hacettepe Journal of Mathematics and Statistics. 2013;42(1):81-5.