Research Article
BibTex RIS Cite

THE REVISED EDGE SZEGED INDEX OF BRIDGE GRAPHS

Year 2012, Volume: 41 Issue: 4, 559 - 566, 01.04.2012

Abstract

The revised edge Szeged index of a connected graph G is defined as Sz∗ e (G) = X e=uv∈E(G) mu(e|G) + m0(e|G) 2 mv(e|G) + m0(e|G) 2 , where E(G) is the edge set of G, mu(e|G) is the number of edges closer to vertex u than to vertex v in G, mv(e|G) is the number of edges closer to vertex v than to vertex u in G, and m0(e|G) is the number of edges equidistant from both ends of e. We give a formula for the revised edge Szeged index of a bridge graph, from which the revised edge Szeged indices for several classes of graphs are calculated.

References

  • Cai, X. and Zhou, B. Edge Szeged index of unicyclic graphs, MATCH Commun. Math. Comput. Chem. 63, 133–144, 2010. [2] Dong, H., Zhou, B. and Trinajsti´c, N. A novel version of the edge-Szeged index, Croat. Chem. Acta 84, 543–545, 2011.
  • Gutman, I. A formula for the Wiener number of trees and its extension to graphs containing cycles, Graph Theory Notes N. Y. 27, 9–15, 1994.
  • Gutman, I. and Ashrafi, A. R. The edge version of the Szeged index, Croat. Chem. Acta 81, 263–266, 2008.
  • Khadikar, P. V., Karmarkar, S., Agrawal, V. K., Singh, J., Shrivastava, A., Lukovits, I. and Diudea, M. V. Szeged index – Applications for drug modeling, Lett. Drug Design Disc. 2, 606–624, 2005.
  • Khalifeh, M. H., Yousefi-Azari, H., Ashrafi, A. R. and Gutman, I. The edge Szeged index of product graphs, Croat. Chem. Acta 81, 277–281, 2008.
  • Mansour, T. and Schork, M. The vertex PI index and Szeged index of bridge graphs, Discrete Appl. Math. 157, 1600–1606, 2009. [8] Mansour, T. and Trinajsti´c, N. The revised Szeged index of bridge graphs, to appear.
  • Randi´c, M. On generalization of Wiener index to cyclic structures, Acta Chim. Slov. 49, 483-496, 2002.
  • Trinajsti´c, N. Chemical Graph Theory, 2nd edn. (CRC Press, Boca Raton, 1992).
  • Vukiˇcevi´c, D. Note on the graphs with the greatest edge-Szeged index, MATCH Commun. Math. Comput. Chem. 61, 673–681, 2009.
  • Wiener, H. Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69, 7–20, 1947.
  • Xing, R. and Zhou, B. On the revised Szeged index of bridge graphs, Comptes Rendus Math. 349, 489–492, 2011.

THE REVISED EDGE SZEGED INDEX OF BRIDGE GRAPHS

Year 2012, Volume: 41 Issue: 4, 559 - 566, 01.04.2012

Abstract

References

  • Cai, X. and Zhou, B. Edge Szeged index of unicyclic graphs, MATCH Commun. Math. Comput. Chem. 63, 133–144, 2010. [2] Dong, H., Zhou, B. and Trinajsti´c, N. A novel version of the edge-Szeged index, Croat. Chem. Acta 84, 543–545, 2011.
  • Gutman, I. A formula for the Wiener number of trees and its extension to graphs containing cycles, Graph Theory Notes N. Y. 27, 9–15, 1994.
  • Gutman, I. and Ashrafi, A. R. The edge version of the Szeged index, Croat. Chem. Acta 81, 263–266, 2008.
  • Khadikar, P. V., Karmarkar, S., Agrawal, V. K., Singh, J., Shrivastava, A., Lukovits, I. and Diudea, M. V. Szeged index – Applications for drug modeling, Lett. Drug Design Disc. 2, 606–624, 2005.
  • Khalifeh, M. H., Yousefi-Azari, H., Ashrafi, A. R. and Gutman, I. The edge Szeged index of product graphs, Croat. Chem. Acta 81, 277–281, 2008.
  • Mansour, T. and Schork, M. The vertex PI index and Szeged index of bridge graphs, Discrete Appl. Math. 157, 1600–1606, 2009. [8] Mansour, T. and Trinajsti´c, N. The revised Szeged index of bridge graphs, to appear.
  • Randi´c, M. On generalization of Wiener index to cyclic structures, Acta Chim. Slov. 49, 483-496, 2002.
  • Trinajsti´c, N. Chemical Graph Theory, 2nd edn. (CRC Press, Boca Raton, 1992).
  • Vukiˇcevi´c, D. Note on the graphs with the greatest edge-Szeged index, MATCH Commun. Math. Comput. Chem. 61, 673–681, 2009.
  • Wiener, H. Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69, 7–20, 1947.
  • Xing, R. and Zhou, B. On the revised Szeged index of bridge graphs, Comptes Rendus Math. 349, 489–492, 2011.
There are 11 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Mathematics
Authors

Hui Dong This is me

 bo Zhou This is me

Publication Date April 1, 2012
Published in Issue Year 2012 Volume: 41 Issue: 4

Cite

APA Dong, H., & Zhou, . (2012). THE REVISED EDGE SZEGED INDEX OF BRIDGE GRAPHS. Hacettepe Journal of Mathematics and Statistics, 41(4), 559-566.
AMA Dong H, Zhou . THE REVISED EDGE SZEGED INDEX OF BRIDGE GRAPHS. Hacettepe Journal of Mathematics and Statistics. April 2012;41(4):559-566.
Chicago Dong, Hui, and  bo Zhou. “THE REVISED EDGE SZEGED INDEX OF BRIDGE GRAPHS”. Hacettepe Journal of Mathematics and Statistics 41, no. 4 (April 2012): 559-66.
EndNote Dong H, Zhou  (April 1, 2012) THE REVISED EDGE SZEGED INDEX OF BRIDGE GRAPHS. Hacettepe Journal of Mathematics and Statistics 41 4 559–566.
IEEE H. Dong and  . Zhou, “THE REVISED EDGE SZEGED INDEX OF BRIDGE GRAPHS”, Hacettepe Journal of Mathematics and Statistics, vol. 41, no. 4, pp. 559–566, 2012.
ISNAD Dong, Hui - Zhou, bo. “THE REVISED EDGE SZEGED INDEX OF BRIDGE GRAPHS”. Hacettepe Journal of Mathematics and Statistics 41/4 (April 2012), 559-566.
JAMA Dong H, Zhou . THE REVISED EDGE SZEGED INDEX OF BRIDGE GRAPHS. Hacettepe Journal of Mathematics and Statistics. 2012;41:559–566.
MLA Dong, Hui and  bo Zhou. “THE REVISED EDGE SZEGED INDEX OF BRIDGE GRAPHS”. Hacettepe Journal of Mathematics and Statistics, vol. 41, no. 4, 2012, pp. 559-66.
Vancouver Dong H, Zhou . THE REVISED EDGE SZEGED INDEX OF BRIDGE GRAPHS. Hacettepe Journal of Mathematics and Statistics. 2012;41(4):559-66.