BibTex RIS Cite

Subclass of Harmonic Univalent Functions Associated with the Derivative Operator FULL TEXT

Year 2012, Volume: 41 Issue: 1, 47 - 58, 01.01.2012

References

  • Ahuja, O. P. Planar harmonic univalent and related mappings, J. Inequal. Pure Appl. Math. 6 (4), Art. 122, 1–18, 2005.
  • Al-Shaqsi, K. and Darus, M. On harmonic functions defined by derivative operator, Journal of Inequalities and Applications, Art. ID 263413, 1–10, 2008.
  • Al-Shaqsi, K. and Darus, M. An operator defined by convolution involving the polyloga- rithms functions, Journal of Math. and Stat. 4 (1), 46–50, 2008.
  • Clunie, J. and Sheil-Small, T. Harmonic univalent functions, Ann. Acad. Sci. Fen. Series AI Math. 9 (3), 3–25, 1984.
  • Duren, P. Harmonic Mappings in the Plane (Cambridge Univ. Press, Cambridge, UK, ). Jahangiri, J. M. Harmonic functions starlike in the unit disc, J. Math. Anal. Appl. 235, –477, 1999.
  • Jahangiri, J. M., Murugusundaramoorthy, G. and Vijaya, K. Salagean-type harmonic uni- valent functions, Southwest J. Pure Appl. Math. 2, 77–82, 2002.
  • Murugusundaramoorthy, G. and Vijaya, K. On certain classes of harmonic univalent func- tions involving Ruscheweyh derivatives, Bull. Cal. Math. Soc. 96 (2), 99–108, 2004.
  • Ponnusamy, S. and Rasila, A. Planar harmonic mappings, RMS Mathematics Newsletter (2) (2007), 40–57, 2007.
  • Rosy, T., Stephen, B. A., Subramanian, K. G. and Jahangiri, J. M. Goodman-Ronning-type harmonic univalent functions, Kyungpook Math. J. 41 (1), 45–54, 2001.
  • Ruscheweyh, S. Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81, 521–528, Ruscheweyh, S. Convolutions in Geometric Function Theory (Les Presses de I Universite de Montreal, 1982).
  • Sheil-Small, T. Constants for planar harmonic mappings, J. London Math. Soc. 2 (42), –248, 1990.
  • Silverman, H. Harmonic univalent functions with negative coefficients, J. Math. Anal. Appl. 220, 283–289, 1998.
  • Silverman, H. and Silvia, E. M. Subclasses of harmonic univalent functions, New Zealand J. Math. 28, 275–284, 1999.
  • Srivastava, H. M. and Owa, S. Current Topics in Analytic Function Theory (World Scien- tific Publishing Company, Singapore, 1992).

Subclass of Harmonic Univalent Functions Associated with the Derivative Operator FULL TEXT

Year 2012, Volume: 41 Issue: 1, 47 - 58, 01.01.2012

References

  • Ahuja, O. P. Planar harmonic univalent and related mappings, J. Inequal. Pure Appl. Math. 6 (4), Art. 122, 1–18, 2005.
  • Al-Shaqsi, K. and Darus, M. On harmonic functions defined by derivative operator, Journal of Inequalities and Applications, Art. ID 263413, 1–10, 2008.
  • Al-Shaqsi, K. and Darus, M. An operator defined by convolution involving the polyloga- rithms functions, Journal of Math. and Stat. 4 (1), 46–50, 2008.
  • Clunie, J. and Sheil-Small, T. Harmonic univalent functions, Ann. Acad. Sci. Fen. Series AI Math. 9 (3), 3–25, 1984.
  • Duren, P. Harmonic Mappings in the Plane (Cambridge Univ. Press, Cambridge, UK, ). Jahangiri, J. M. Harmonic functions starlike in the unit disc, J. Math. Anal. Appl. 235, –477, 1999.
  • Jahangiri, J. M., Murugusundaramoorthy, G. and Vijaya, K. Salagean-type harmonic uni- valent functions, Southwest J. Pure Appl. Math. 2, 77–82, 2002.
  • Murugusundaramoorthy, G. and Vijaya, K. On certain classes of harmonic univalent func- tions involving Ruscheweyh derivatives, Bull. Cal. Math. Soc. 96 (2), 99–108, 2004.
  • Ponnusamy, S. and Rasila, A. Planar harmonic mappings, RMS Mathematics Newsletter (2) (2007), 40–57, 2007.
  • Rosy, T., Stephen, B. A., Subramanian, K. G. and Jahangiri, J. M. Goodman-Ronning-type harmonic univalent functions, Kyungpook Math. J. 41 (1), 45–54, 2001.
  • Ruscheweyh, S. Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81, 521–528, Ruscheweyh, S. Convolutions in Geometric Function Theory (Les Presses de I Universite de Montreal, 1982).
  • Sheil-Small, T. Constants for planar harmonic mappings, J. London Math. Soc. 2 (42), –248, 1990.
  • Silverman, H. Harmonic univalent functions with negative coefficients, J. Math. Anal. Appl. 220, 283–289, 1998.
  • Silverman, H. and Silvia, E. M. Subclasses of harmonic univalent functions, New Zealand J. Math. 28, 275–284, 1999.
  • Srivastava, H. M. and Owa, S. Current Topics in Analytic Function Theory (World Scien- tific Publishing Company, Singapore, 1992).
There are 14 citations in total.

Details

Primary Language Turkish
Journal Section Mathematics
Authors

A.l. Pathak This is me

S.b. Joshi This is me

P. Dwivedi This is me

R. Agarwal This is me

Publication Date January 1, 2012
Published in Issue Year 2012 Volume: 41 Issue: 1

Cite

APA Pathak, A., Joshi, S., Dwivedi, P., Agarwal, R. (2012). Subclass of Harmonic Univalent Functions Associated with the Derivative Operator FULL TEXT. Hacettepe Journal of Mathematics and Statistics, 41(1), 47-58.
AMA Pathak A, Joshi S, Dwivedi P, Agarwal R. Subclass of Harmonic Univalent Functions Associated with the Derivative Operator FULL TEXT. Hacettepe Journal of Mathematics and Statistics. January 2012;41(1):47-58.
Chicago Pathak, A.l., S.b. Joshi, P. Dwivedi, and R. Agarwal. “Subclass of Harmonic Univalent Functions Associated With the Derivative Operator FULL TEXT”. Hacettepe Journal of Mathematics and Statistics 41, no. 1 (January 2012): 47-58.
EndNote Pathak A, Joshi S, Dwivedi P, Agarwal R (January 1, 2012) Subclass of Harmonic Univalent Functions Associated with the Derivative Operator FULL TEXT. Hacettepe Journal of Mathematics and Statistics 41 1 47–58.
IEEE A. Pathak, S. Joshi, P. Dwivedi, and R. Agarwal, “Subclass of Harmonic Univalent Functions Associated with the Derivative Operator FULL TEXT”, Hacettepe Journal of Mathematics and Statistics, vol. 41, no. 1, pp. 47–58, 2012.
ISNAD Pathak, A.l. et al. “Subclass of Harmonic Univalent Functions Associated With the Derivative Operator FULL TEXT”. Hacettepe Journal of Mathematics and Statistics 41/1 (January 2012), 47-58.
JAMA Pathak A, Joshi S, Dwivedi P, Agarwal R. Subclass of Harmonic Univalent Functions Associated with the Derivative Operator FULL TEXT. Hacettepe Journal of Mathematics and Statistics. 2012;41:47–58.
MLA Pathak, A.l. et al. “Subclass of Harmonic Univalent Functions Associated With the Derivative Operator FULL TEXT”. Hacettepe Journal of Mathematics and Statistics, vol. 41, no. 1, 2012, pp. 47-58.
Vancouver Pathak A, Joshi S, Dwivedi P, Agarwal R. Subclass of Harmonic Univalent Functions Associated with the Derivative Operator FULL TEXT. Hacettepe Journal of Mathematics and Statistics. 2012;41(1):47-58.