Araştırma Makalesi
BibTex RIS Kaynak Göster

THE GEOMETRY OF COMPLEX CONJUGATE CONNECTIONS

Yıl 2012, Cilt: 41 Sayı: 1, 119 - 126, 01.01.2012

Öz

Kaynakça

  • Alekseevsky, D. V., Cort´es, V. and Devchand, C. Special complex manifolds, J. Geom. Phys. 42(1-2), 85–105, 2002.
  • Binh, T. Q. On semi-symmetric connections, Period. Math. Hungar. 21 (2), 101–107, 1990.
  • Blaga, A. M. and Crasmareanu, M. The geometry of product conjugate connections, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 58 (2012), in press.
  • Calin, O., Matsuzoe, H. and Zhang, J. Generalizations of conjugate connections, in Trends in differential geometry, complex analysis and mathematical physics. Proceedings of 9th international workshop on complex structures, integrability and vector fields, Sofia, Bulgaria, August 25-29, 2008. (World Scientific, Hackensack NJ, 2009), 26–34.
  • Cruceanu, V. Almost product bicomplex structures on manifolds, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 51 (1), 99–118, 2005.
  • Gauduchon, P. Hermitian connections and Dirac operators, Boll. Un. Mat. Ital. B (7) 11 (2) suppl., 257–288, 1997.
  • Hiric˘a, I. E. and Nicolescu, L. On quarter-symmetric metric connections on pseudo- Riemannian manifolds, Balkan J. Geom. Appl. 16 (1), 56–65, 2011.
  • Ishihara, S. Quaternion K¨ahlerian manifolds, J. Diff. Geom. 9, 483–500, 1974.
  • Kirichenko, V. F. Method of generalized Hermitian geometry in the theory of almost contact manifold, Itogi Nauki i Tekhniki, Problems of geometry 18, 25–71, 1986; translated in J. Soviet. Math. 42 (5), 1885–1919, 1988.
  • Sch¨afer, L. tt*-geometry on the tangent bundle of an almost complex manifold, J. Geom.
  • Phys. 57 (3), 999–1014, 2007.

THE GEOMETRY OF COMPLEX CONJUGATE CONNECTIONS

Yıl 2012, Cilt: 41 Sayı: 1, 119 - 126, 01.01.2012

Öz

Properties of pairs of conjugate connections are stated with a special view towards the duality of these connections. We express the complex conjugate connections in terms of the structural and the virtual tensors from the almost complex geometry. For a pair of almost complex structures we discuss their mutual recurrence by pointing out that an almost quaternionic structure is implied. The notion of complex conjugate connections is extended in two directions, one called generalized obtained by adding a general (1, 2)-tensor field and the other called exponential since it involves the exponential of the almost complex structure considered.

Kaynakça

  • Alekseevsky, D. V., Cort´es, V. and Devchand, C. Special complex manifolds, J. Geom. Phys. 42(1-2), 85–105, 2002.
  • Binh, T. Q. On semi-symmetric connections, Period. Math. Hungar. 21 (2), 101–107, 1990.
  • Blaga, A. M. and Crasmareanu, M. The geometry of product conjugate connections, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 58 (2012), in press.
  • Calin, O., Matsuzoe, H. and Zhang, J. Generalizations of conjugate connections, in Trends in differential geometry, complex analysis and mathematical physics. Proceedings of 9th international workshop on complex structures, integrability and vector fields, Sofia, Bulgaria, August 25-29, 2008. (World Scientific, Hackensack NJ, 2009), 26–34.
  • Cruceanu, V. Almost product bicomplex structures on manifolds, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 51 (1), 99–118, 2005.
  • Gauduchon, P. Hermitian connections and Dirac operators, Boll. Un. Mat. Ital. B (7) 11 (2) suppl., 257–288, 1997.
  • Hiric˘a, I. E. and Nicolescu, L. On quarter-symmetric metric connections on pseudo- Riemannian manifolds, Balkan J. Geom. Appl. 16 (1), 56–65, 2011.
  • Ishihara, S. Quaternion K¨ahlerian manifolds, J. Diff. Geom. 9, 483–500, 1974.
  • Kirichenko, V. F. Method of generalized Hermitian geometry in the theory of almost contact manifold, Itogi Nauki i Tekhniki, Problems of geometry 18, 25–71, 1986; translated in J. Soviet. Math. 42 (5), 1885–1919, 1988.
  • Sch¨afer, L. tt*-geometry on the tangent bundle of an almost complex manifold, J. Geom.
  • Phys. 57 (3), 999–1014, 2007.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İstatistik
Bölüm Matematik
Yazarlar

Adara M. Blaga Bu kişi benim

Mircea Crasmareanu Bu kişi benim

Yayımlanma Tarihi 1 Ocak 2012
Yayımlandığı Sayı Yıl 2012 Cilt: 41 Sayı: 1

Kaynak Göster

APA Blaga, A. M., & Crasmareanu, M. (2012). THE GEOMETRY OF COMPLEX CONJUGATE CONNECTIONS. Hacettepe Journal of Mathematics and Statistics, 41(1), 119-126.
AMA Blaga AM, Crasmareanu M. THE GEOMETRY OF COMPLEX CONJUGATE CONNECTIONS. Hacettepe Journal of Mathematics and Statistics. Ocak 2012;41(1):119-126.
Chicago Blaga, Adara M., ve Mircea Crasmareanu. “THE GEOMETRY OF COMPLEX CONJUGATE CONNECTIONS”. Hacettepe Journal of Mathematics and Statistics 41, sy. 1 (Ocak 2012): 119-26.
EndNote Blaga AM, Crasmareanu M (01 Ocak 2012) THE GEOMETRY OF COMPLEX CONJUGATE CONNECTIONS. Hacettepe Journal of Mathematics and Statistics 41 1 119–126.
IEEE A. M. Blaga ve M. Crasmareanu, “THE GEOMETRY OF COMPLEX CONJUGATE CONNECTIONS”, Hacettepe Journal of Mathematics and Statistics, c. 41, sy. 1, ss. 119–126, 2012.
ISNAD Blaga, Adara M. - Crasmareanu, Mircea. “THE GEOMETRY OF COMPLEX CONJUGATE CONNECTIONS”. Hacettepe Journal of Mathematics and Statistics 41/1 (Ocak 2012), 119-126.
JAMA Blaga AM, Crasmareanu M. THE GEOMETRY OF COMPLEX CONJUGATE CONNECTIONS. Hacettepe Journal of Mathematics and Statistics. 2012;41:119–126.
MLA Blaga, Adara M. ve Mircea Crasmareanu. “THE GEOMETRY OF COMPLEX CONJUGATE CONNECTIONS”. Hacettepe Journal of Mathematics and Statistics, c. 41, sy. 1, 2012, ss. 119-26.
Vancouver Blaga AM, Crasmareanu M. THE GEOMETRY OF COMPLEX CONJUGATE CONNECTIONS. Hacettepe Journal of Mathematics and Statistics. 2012;41(1):119-26.