Al-Thagafi, M. A. Best approximation and fixed points in strong M-starshaped metric spaces, Internat. J. Math. Sci. 18, 613–616, 1995.
Al-Thagafi, M. A. Common fixed points and best approximation, J. Approx. Theory 85, 318–323, 1996.
Chandok, S. and Narang, T. D. Some common fixed point theorems for Banach operator pairs with applications in best approximation, Nonlinear Analysis 73, 105–109, 2010.
Chandok, S. and Narang, T. D. Common fixed points and invariant approximation for Gregus type contraction mappings, Rendiconti Circolo Mat. Palermo, DOI 10.1007/s12215-011-0043-5, 2011.
Chen, J. and Li, Z. Common fixed points for Banach operator pairs in best approximations, J. Math. Anal. Appl. 336, 1466–1475, 2007.
Ciric, Lj. B. On Diviccaro, Fisher and Sessa open questions, Arch. Math. (Brno) 29, 145–152, 1993.
Ciric, Lj. B. On a generalization of Gregus fixed point theorem, Czechoslovak Math. J. 50, 449–458, 2000.
Ciric, Lj. B., Hussain, N., Akbar, F. and Ume, J. S. Common fixed points for Banach operator pairs from the set of best approximation, Bull. Belg. Math. Soc. Simon Stevin 16, 319–336, 2009.
Dotson, W. W. Jr. Fixed point theorems for nonexpansive mappings on starshaped subset of Banach spaces, J. London Math. Soc. 4, 408–410, 1972.
Dotson, W.W. Jr. On fixed points of nonexpansive mappings in nonconvex sets, Proc. Amer. Math. Soc. 38, 155–156, 1973.
Fisher, B. and Sessa, S. On a fixed point theorem of Gregus, Internat. J. Math. Math. Sci. 9, 23–28, 1986.
Gregus, M. Jr. A fixed point theorem in Banach space, Boll. Unione Mat. Ital. Sez. A Mat. Soc. Cult. 517, 193–198, 1980.
Guay, M. D., Singh, K. L. and Whitfield, J. H. M. Fixed point theorems for nonexpansive mappings in convex metric spaces, Proc. Conference on nonlinear analysis (Ed. S. P. Singh and J. H. Bury) Marcel Dekker 80, 179–189, 1982.
Habiniak, L. Fixed point theorems and invariant approximation, J. Approx. Theory 56, 241–244, 1989.
Hussain, N. and Jungck, G. Common fixed point and invariant approximation results for noncommuting generalized (f, g)-nonexpansive maps, J. Math. Anal. Appl. 321, 851–861, 2006.
Hussain, N. Common fixed points in best approximation for Banach operator pairs with Ciric type I-contractions, J. Math. Anal. Appl. 338, 1351–1363, 2008.
Jungck, G. On a fixed point theorem of Fisher and Sessa, Internat. J. Math. Math. Sci. 13, 497–500, 1990.
Jungck, G. and Sessa, S. Fixed point theorems in best approximation theory, Math. Japon. 42, 249–252, 1995.
Khan, A. R., Thaheem, A. B. and Hussain, N. Random fixed points and random approximations in nonconvex domains, J. Appl. Math. Stoch. Anal. 15, 247–253, 2002.
Machado, H. V. A characterization of convex subsets of normed spaces, Kodai Math. Sem. Rep. 25, 307–320, 1973.
Narang, T. D. and Chandok, S. Fixed points and best approximation in metric spaces, Indian J. Math. 51, 293–303, 2009.
Narang, T. D. and Chandok, S. Common fixed points and invariant approximation of Rsubweakly commuting maps in convex metric spaces, Ukrainian Math. J. 62, 1367–1376, 2010.
Narang, T. D. and Chandok, S. Common fixed points and invariant approximation of pointwise R-subweakly commuting maps on nonconvex sets, General Math. 4, 109–125, 2010.
Smoluk, A. Invariant approximations, Mat. Stosow 17, 17–22, 1981.
Subrahmanyam, P. V. Remarks on some fixed point theorems related to Banach’s contraction principle, J. Math. Phys. Sci. 8, 445–457, 1974; Erratum: J. Math. Phys. Sci. 9, 195, 1975.
Subrahmanyam, P. V. An application of a fixed point theorem to best approximation, J. Approx. Theory 20, 165–172, 1977.
Takahashi, W. A convexity in metric space and nonexpansive mappings I, Kodai Math. Sem. Rep. 22, 142–149, 1970.
Common Fixed Points and Invariant Approximation for Banach Operator Pairs with Ciric Type Nonexpansive Mappings
Al-Thagafi, M. A. Best approximation and fixed points in strong M-starshaped metric spaces, Internat. J. Math. Sci. 18, 613–616, 1995.
Al-Thagafi, M. A. Common fixed points and best approximation, J. Approx. Theory 85, 318–323, 1996.
Chandok, S. and Narang, T. D. Some common fixed point theorems for Banach operator pairs with applications in best approximation, Nonlinear Analysis 73, 105–109, 2010.
Chandok, S. and Narang, T. D. Common fixed points and invariant approximation for Gregus type contraction mappings, Rendiconti Circolo Mat. Palermo, DOI 10.1007/s12215-011-0043-5, 2011.
Chen, J. and Li, Z. Common fixed points for Banach operator pairs in best approximations, J. Math. Anal. Appl. 336, 1466–1475, 2007.
Ciric, Lj. B. On Diviccaro, Fisher and Sessa open questions, Arch. Math. (Brno) 29, 145–152, 1993.
Ciric, Lj. B. On a generalization of Gregus fixed point theorem, Czechoslovak Math. J. 50, 449–458, 2000.
Ciric, Lj. B., Hussain, N., Akbar, F. and Ume, J. S. Common fixed points for Banach operator pairs from the set of best approximation, Bull. Belg. Math. Soc. Simon Stevin 16, 319–336, 2009.
Dotson, W. W. Jr. Fixed point theorems for nonexpansive mappings on starshaped subset of Banach spaces, J. London Math. Soc. 4, 408–410, 1972.
Dotson, W.W. Jr. On fixed points of nonexpansive mappings in nonconvex sets, Proc. Amer. Math. Soc. 38, 155–156, 1973.
Fisher, B. and Sessa, S. On a fixed point theorem of Gregus, Internat. J. Math. Math. Sci. 9, 23–28, 1986.
Gregus, M. Jr. A fixed point theorem in Banach space, Boll. Unione Mat. Ital. Sez. A Mat. Soc. Cult. 517, 193–198, 1980.
Guay, M. D., Singh, K. L. and Whitfield, J. H. M. Fixed point theorems for nonexpansive mappings in convex metric spaces, Proc. Conference on nonlinear analysis (Ed. S. P. Singh and J. H. Bury) Marcel Dekker 80, 179–189, 1982.
Habiniak, L. Fixed point theorems and invariant approximation, J. Approx. Theory 56, 241–244, 1989.
Hussain, N. and Jungck, G. Common fixed point and invariant approximation results for noncommuting generalized (f, g)-nonexpansive maps, J. Math. Anal. Appl. 321, 851–861, 2006.
Hussain, N. Common fixed points in best approximation for Banach operator pairs with Ciric type I-contractions, J. Math. Anal. Appl. 338, 1351–1363, 2008.
Jungck, G. On a fixed point theorem of Fisher and Sessa, Internat. J. Math. Math. Sci. 13, 497–500, 1990.
Jungck, G. and Sessa, S. Fixed point theorems in best approximation theory, Math. Japon. 42, 249–252, 1995.
Khan, A. R., Thaheem, A. B. and Hussain, N. Random fixed points and random approximations in nonconvex domains, J. Appl. Math. Stoch. Anal. 15, 247–253, 2002.
Machado, H. V. A characterization of convex subsets of normed spaces, Kodai Math. Sem. Rep. 25, 307–320, 1973.
Narang, T. D. and Chandok, S. Fixed points and best approximation in metric spaces, Indian J. Math. 51, 293–303, 2009.
Narang, T. D. and Chandok, S. Common fixed points and invariant approximation of Rsubweakly commuting maps in convex metric spaces, Ukrainian Math. J. 62, 1367–1376, 2010.
Narang, T. D. and Chandok, S. Common fixed points and invariant approximation of pointwise R-subweakly commuting maps on nonconvex sets, General Math. 4, 109–125, 2010.
Smoluk, A. Invariant approximations, Mat. Stosow 17, 17–22, 1981.
Subrahmanyam, P. V. Remarks on some fixed point theorems related to Banach’s contraction principle, J. Math. Phys. Sci. 8, 445–457, 1974; Erratum: J. Math. Phys. Sci. 9, 195, 1975.
Subrahmanyam, P. V. An application of a fixed point theorem to best approximation, J. Approx. Theory 20, 165–172, 1977.
Takahashi, W. A convexity in metric space and nonexpansive mappings I, Kodai Math. Sem. Rep. 22, 142–149, 1970.
Ch, S., & Narang, T. (2011). Common Fixed Points and Invariant Approximation for Banach Operator Pairs with Ciric Type Nonexpansive Mappings. Hacettepe Journal of Mathematics and Statistics, 40(6), 871-883.
AMA
Ch S, Narang T. Common Fixed Points and Invariant Approximation for Banach Operator Pairs with Ciric Type Nonexpansive Mappings. Hacettepe Journal of Mathematics and Statistics. Haziran 2011;40(6):871-883.
Chicago
Ch, Sumit, ve T.d. Narang. “Common Fixed Points and Invariant Approximation for Banach Operator Pairs With Ciric Type Nonexpansive Mappings”. Hacettepe Journal of Mathematics and Statistics 40, sy. 6 (Haziran 2011): 871-83.
EndNote
Ch S, Narang T (01 Haziran 2011) Common Fixed Points and Invariant Approximation for Banach Operator Pairs with Ciric Type Nonexpansive Mappings. Hacettepe Journal of Mathematics and Statistics 40 6 871–883.
IEEE
S. Ch ve T. Narang, “Common Fixed Points and Invariant Approximation for Banach Operator Pairs with Ciric Type Nonexpansive Mappings”, Hacettepe Journal of Mathematics and Statistics, c. 40, sy. 6, ss. 871–883, 2011.
ISNAD
Ch, Sumit - Narang, T.d. “Common Fixed Points and Invariant Approximation for Banach Operator Pairs With Ciric Type Nonexpansive Mappings”. Hacettepe Journal of Mathematics and Statistics 40/6 (Haziran 2011), 871-883.
JAMA
Ch S, Narang T. Common Fixed Points and Invariant Approximation for Banach Operator Pairs with Ciric Type Nonexpansive Mappings. Hacettepe Journal of Mathematics and Statistics. 2011;40:871–883.
MLA
Ch, Sumit ve T.d. Narang. “Common Fixed Points and Invariant Approximation for Banach Operator Pairs With Ciric Type Nonexpansive Mappings”. Hacettepe Journal of Mathematics and Statistics, c. 40, sy. 6, 2011, ss. 871-83.
Vancouver
Ch S, Narang T. Common Fixed Points and Invariant Approximation for Banach Operator Pairs with Ciric Type Nonexpansive Mappings. Hacettepe Journal of Mathematics and Statistics. 2011;40(6):871-83.