Research Article
BibTex RIS Cite
Year 2011, Volume: 40 Issue: 4, 571 - 579, 01.04.2011

Abstract

References

  • Arriola, L. M. and Beyer, W. A. Stability of the Cauchy functional equation over p-adic fields, Real Anal. Exchange 31, 125–132, 2005/2006.
  • Cho, Y. J., Park, C. and Saadati, R. Functional inequalities in non-Archimedean Banach spaces, Appl. Math. Letters 10, 1238–1242, 2010.
  • Czerwik, S. Stability of Functional Equations of Ulam-Hyers-Rassias Type (Hadronic Press, Palm Harbor, Florida, 2003).
  • Forti, G. L. Hyers-Ulam stability of functional equations in several variables Aequationes Math. 50, 143–190, 1995.
  • Hyers, D. H. and Rassias, Th. M. Approximate homomorphisms, Aequationes Math. 44, 125–153, 1992.
  • Hyers, D. H., Isac, G. and Rassias, Th. M. Stability of Functional Equations in Several Variables(Birkh¨auser, Basel, 1998).
  • Jun, K. and Kim, H. The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274, 867–878, 2002.
  • Jung, S. Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis (Hadronic Press lnc., Palm Harbor, Florida, 2001).
  • Lee, Y. and Chung, S. Stability of an Euler-Lagrange-Rassias equation in the spaces of generalized functions, Appl. Math. Letters 21, 694–700, 2008.
  • Kim, H. and Rassias, J. M. Generalization of Ulam stability problem for Euler-Lagrange quadratic mappings, J. Math. Anal. Appl. 336, 277–296, 2007.
  • Moslehian, M. S. The Jensen functional equation in non-Archimedian normed spaces, J. Funct. Spaces. Appl. 2 (1), 13–24, 2009.
  • Moslehian, M. S. and Rassias, Th. M. Stability of functional equations in non-Archimedian spaces, Appl. Anal. Disc. Math. 2, 325–334, 2007.
  • Moslehian, M. S. and Sadeghi, Gh. Stability of tow type of cubic functional equations in non-Archimedian spaces, Real. Anal. Exchange 33, 375–383, 2008.
  • Rassias, J. M. On the stability of the non-linear Euler-Lagrange functional equation in real normed linear spaces, J. Math. Phys. Sci. 28, 231–235, 1994.
  • Rassias, J. M. On the stability of the general Euler-Lagrange functional equation, Demon- stratio Math. 29, 755–766, 1996.
  • Rassias, J. M. Solution of the Ulam stability problem for Euler-Lagrange quadratic mapping, J. Math. Anal. Appl. 220, 613–639, 1998.
  • Rassias, J. M. On the stability of the multi-dimensional Euler-Lagrange functional equation, J. Indian Math. Soc. 66, 1–9, 1999.
  • Rassias J. M. and Rassias, M. J. Refined Ulam stability for Euler-Lagrange type mappings in Hilbert spaces, Intern. J. Appl. Math. Stat. 7, 126–132, 2007.
  • Rassias, Th. M. On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62, 23–130, 2000.
  • Rassias, Th. M. Functional Equations, Inequalities and Applications (Kluwer Academic Pub- lishers, Dordrecht, Boston and London, 2003).

STABILITY OF EULER-LAGRANGE QUADRATIC FUNCTIONAL EQUATIONS IN NON-ARCHIMEDEAN NORMED SPACES

Year 2011, Volume: 40 Issue: 4, 571 - 579, 01.04.2011

Abstract

In this paper, we prove the stability of Euler-Lagrange quadratic mappings in the framework of non-Archimedean normed spaces. Our results
in the setting of non-Archimedean normed spaces are different from the
results in the setting of normed spaces.

References

  • Arriola, L. M. and Beyer, W. A. Stability of the Cauchy functional equation over p-adic fields, Real Anal. Exchange 31, 125–132, 2005/2006.
  • Cho, Y. J., Park, C. and Saadati, R. Functional inequalities in non-Archimedean Banach spaces, Appl. Math. Letters 10, 1238–1242, 2010.
  • Czerwik, S. Stability of Functional Equations of Ulam-Hyers-Rassias Type (Hadronic Press, Palm Harbor, Florida, 2003).
  • Forti, G. L. Hyers-Ulam stability of functional equations in several variables Aequationes Math. 50, 143–190, 1995.
  • Hyers, D. H. and Rassias, Th. M. Approximate homomorphisms, Aequationes Math. 44, 125–153, 1992.
  • Hyers, D. H., Isac, G. and Rassias, Th. M. Stability of Functional Equations in Several Variables(Birkh¨auser, Basel, 1998).
  • Jun, K. and Kim, H. The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274, 867–878, 2002.
  • Jung, S. Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis (Hadronic Press lnc., Palm Harbor, Florida, 2001).
  • Lee, Y. and Chung, S. Stability of an Euler-Lagrange-Rassias equation in the spaces of generalized functions, Appl. Math. Letters 21, 694–700, 2008.
  • Kim, H. and Rassias, J. M. Generalization of Ulam stability problem for Euler-Lagrange quadratic mappings, J. Math. Anal. Appl. 336, 277–296, 2007.
  • Moslehian, M. S. The Jensen functional equation in non-Archimedian normed spaces, J. Funct. Spaces. Appl. 2 (1), 13–24, 2009.
  • Moslehian, M. S. and Rassias, Th. M. Stability of functional equations in non-Archimedian spaces, Appl. Anal. Disc. Math. 2, 325–334, 2007.
  • Moslehian, M. S. and Sadeghi, Gh. Stability of tow type of cubic functional equations in non-Archimedian spaces, Real. Anal. Exchange 33, 375–383, 2008.
  • Rassias, J. M. On the stability of the non-linear Euler-Lagrange functional equation in real normed linear spaces, J. Math. Phys. Sci. 28, 231–235, 1994.
  • Rassias, J. M. On the stability of the general Euler-Lagrange functional equation, Demon- stratio Math. 29, 755–766, 1996.
  • Rassias, J. M. Solution of the Ulam stability problem for Euler-Lagrange quadratic mapping, J. Math. Anal. Appl. 220, 613–639, 1998.
  • Rassias, J. M. On the stability of the multi-dimensional Euler-Lagrange functional equation, J. Indian Math. Soc. 66, 1–9, 1999.
  • Rassias J. M. and Rassias, M. J. Refined Ulam stability for Euler-Lagrange type mappings in Hilbert spaces, Intern. J. Appl. Math. Stat. 7, 126–132, 2007.
  • Rassias, Th. M. On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62, 23–130, 2000.
  • Rassias, Th. M. Functional Equations, Inequalities and Applications (Kluwer Academic Pub- lishers, Dordrecht, Boston and London, 2003).
There are 20 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Mathematics
Authors

Ghadir Sadeghi This is me

Reza Saadati This is me

M. Janfada This is me

J.m. Rassias This is me

Publication Date April 1, 2011
Published in Issue Year 2011 Volume: 40 Issue: 4

Cite

APA Sadeghi, G., Saadati, R., Janfada, M., Rassias, J. (2011). STABILITY OF EULER-LAGRANGE QUADRATIC FUNCTIONAL EQUATIONS IN NON-ARCHIMEDEAN NORMED SPACES. Hacettepe Journal of Mathematics and Statistics, 40(4), 571-579.
AMA Sadeghi G, Saadati R, Janfada M, Rassias J. STABILITY OF EULER-LAGRANGE QUADRATIC FUNCTIONAL EQUATIONS IN NON-ARCHIMEDEAN NORMED SPACES. Hacettepe Journal of Mathematics and Statistics. April 2011;40(4):571-579.
Chicago Sadeghi, Ghadir, Reza Saadati, M. Janfada, and J.m. Rassias. “STABILITY OF EULER-LAGRANGE QUADRATIC FUNCTIONAL EQUATIONS IN NON-ARCHIMEDEAN NORMED SPACES”. Hacettepe Journal of Mathematics and Statistics 40, no. 4 (April 2011): 571-79.
EndNote Sadeghi G, Saadati R, Janfada M, Rassias J (April 1, 2011) STABILITY OF EULER-LAGRANGE QUADRATIC FUNCTIONAL EQUATIONS IN NON-ARCHIMEDEAN NORMED SPACES. Hacettepe Journal of Mathematics and Statistics 40 4 571–579.
IEEE G. Sadeghi, R. Saadati, M. Janfada, and J. Rassias, “STABILITY OF EULER-LAGRANGE QUADRATIC FUNCTIONAL EQUATIONS IN NON-ARCHIMEDEAN NORMED SPACES”, Hacettepe Journal of Mathematics and Statistics, vol. 40, no. 4, pp. 571–579, 2011.
ISNAD Sadeghi, Ghadir et al. “STABILITY OF EULER-LAGRANGE QUADRATIC FUNCTIONAL EQUATIONS IN NON-ARCHIMEDEAN NORMED SPACES”. Hacettepe Journal of Mathematics and Statistics 40/4 (April 2011), 571-579.
JAMA Sadeghi G, Saadati R, Janfada M, Rassias J. STABILITY OF EULER-LAGRANGE QUADRATIC FUNCTIONAL EQUATIONS IN NON-ARCHIMEDEAN NORMED SPACES. Hacettepe Journal of Mathematics and Statistics. 2011;40:571–579.
MLA Sadeghi, Ghadir et al. “STABILITY OF EULER-LAGRANGE QUADRATIC FUNCTIONAL EQUATIONS IN NON-ARCHIMEDEAN NORMED SPACES”. Hacettepe Journal of Mathematics and Statistics, vol. 40, no. 4, 2011, pp. 571-9.
Vancouver Sadeghi G, Saadati R, Janfada M, Rassias J. STABILITY OF EULER-LAGRANGE QUADRATIC FUNCTIONAL EQUATIONS IN NON-ARCHIMEDEAN NORMED SPACES. Hacettepe Journal of Mathematics and Statistics. 2011;40(4):571-9.