BibTex RIS Cite

Numerical Solution of a Quasilinear Parabolic Problem with Periodic Boundary Condition

Year 2010, Volume: 39 Issue: 2, 183 - 189, 01.02.2010

References

  • Bouziani, A. and Mesloub, S. Mixed problem with a weighted integral condition for a para- bolic equation with the Bessel operator, Jour. of Appl. Math. and Stoc. Anal. 15 (3), 277–286, 2002.
  • Liu, C. Weak solutions for a viscous p-Laplacian equation, Elec. Jour. Diff. Equation 63, 1–11, 2003.
  • Colton, D and Wimp, J. Asymptotic behaviour of the fundamental solution to the equation of heat conduction in two temperature, J. Math. Anal. Appl. 2, 411–418, 1979.
  • Ciftci, I. and Halilov, H. Fourier method for a quasilinear parabolic equation with periodic boundary condition, Hacettepe J. Math. Stat. 37 (2), 69–79, 2008.
  • Egger, H., Engl, H. W. and Klibanov, M. V. Global uniquenes and H¨older stability for re- covering a nonlinear source term in a parabolic equation(Aus. Nat. Scien. Foun. 013 (08), 2001), Inverse Problems 21 (1), 271–290, 2005.
  • Halilov, H. On mixed problem for a class of quasilinear pseudo - parabolic equations, Journal of Kocaeli Univ., Pure and Applied Math. Sec. 3, 1–7, 1996.
  • Halilov, H. On mixed problem for a class of quasilinear pseudoparabolic equation, Appl. Anal. 75 (1-2), 61-71, 2000.
  • Hasanov, K. K. On solution of mixed problem for a quasilinear hiperbolic and parabolic equation(Ph.D. Thesis, Baku, 1961).
  • Il’in, V. A. Solvability of mixed problem for hyperbolic and parabolic equation, Uspekhi Math. Nauk 15: 2 (92), 97–154, 1960.
  • Kassam, A. and Trefethen, L. N. Fourth-order time-stepping for stiff PDEs, SIAM J. Sci. Comput. 26 (4), 1214–1233, 2005.
  • Rao, V. R. and Ting, T. W. Initial-value problems for pseudoparabolic partial differential equations, Indiana Univ. Math. J. 23, 131–153, 1973.
  • Rundell, W. The solution of initial- boundary value problems for pseudoparabolic partial differential equations, Proc. Roy. Soc. Edin. Sect. A. 74, 311–326, 1975.
  • Samarski, A. A. The theory of difference schemes (Marcel Dekker, New York, 2001).

Numerical Solution of a Quasilinear Parabolic Problem with Periodic Boundary Condition

Year 2010, Volume: 39 Issue: 2, 183 - 189, 01.02.2010

References

  • Bouziani, A. and Mesloub, S. Mixed problem with a weighted integral condition for a para- bolic equation with the Bessel operator, Jour. of Appl. Math. and Stoc. Anal. 15 (3), 277–286, 2002.
  • Liu, C. Weak solutions for a viscous p-Laplacian equation, Elec. Jour. Diff. Equation 63, 1–11, 2003.
  • Colton, D and Wimp, J. Asymptotic behaviour of the fundamental solution to the equation of heat conduction in two temperature, J. Math. Anal. Appl. 2, 411–418, 1979.
  • Ciftci, I. and Halilov, H. Fourier method for a quasilinear parabolic equation with periodic boundary condition, Hacettepe J. Math. Stat. 37 (2), 69–79, 2008.
  • Egger, H., Engl, H. W. and Klibanov, M. V. Global uniquenes and H¨older stability for re- covering a nonlinear source term in a parabolic equation(Aus. Nat. Scien. Foun. 013 (08), 2001), Inverse Problems 21 (1), 271–290, 2005.
  • Halilov, H. On mixed problem for a class of quasilinear pseudo - parabolic equations, Journal of Kocaeli Univ., Pure and Applied Math. Sec. 3, 1–7, 1996.
  • Halilov, H. On mixed problem for a class of quasilinear pseudoparabolic equation, Appl. Anal. 75 (1-2), 61-71, 2000.
  • Hasanov, K. K. On solution of mixed problem for a quasilinear hiperbolic and parabolic equation(Ph.D. Thesis, Baku, 1961).
  • Il’in, V. A. Solvability of mixed problem for hyperbolic and parabolic equation, Uspekhi Math. Nauk 15: 2 (92), 97–154, 1960.
  • Kassam, A. and Trefethen, L. N. Fourth-order time-stepping for stiff PDEs, SIAM J. Sci. Comput. 26 (4), 1214–1233, 2005.
  • Rao, V. R. and Ting, T. W. Initial-value problems for pseudoparabolic partial differential equations, Indiana Univ. Math. J. 23, 131–153, 1973.
  • Rundell, W. The solution of initial- boundary value problems for pseudoparabolic partial differential equations, Proc. Roy. Soc. Edin. Sect. A. 74, 311–326, 1975.
  • Samarski, A. A. The theory of difference schemes (Marcel Dekker, New York, 2001).
There are 13 citations in total.

Details

Primary Language Turkish
Journal Section Mathematics
Authors

İrem Sakinc This is me

Publication Date February 1, 2010
Published in Issue Year 2010 Volume: 39 Issue: 2

Cite

APA Sakinc, İ. (2010). Numerical Solution of a Quasilinear Parabolic Problem with Periodic Boundary Condition. Hacettepe Journal of Mathematics and Statistics, 39(2), 183-189.
AMA Sakinc İ. Numerical Solution of a Quasilinear Parabolic Problem with Periodic Boundary Condition. Hacettepe Journal of Mathematics and Statistics. February 2010;39(2):183-189.
Chicago Sakinc, İrem. “Numerical Solution of a Quasilinear Parabolic Problem With Periodic Boundary Condition”. Hacettepe Journal of Mathematics and Statistics 39, no. 2 (February 2010): 183-89.
EndNote Sakinc İ (February 1, 2010) Numerical Solution of a Quasilinear Parabolic Problem with Periodic Boundary Condition. Hacettepe Journal of Mathematics and Statistics 39 2 183–189.
IEEE İ. Sakinc, “Numerical Solution of a Quasilinear Parabolic Problem with Periodic Boundary Condition”, Hacettepe Journal of Mathematics and Statistics, vol. 39, no. 2, pp. 183–189, 2010.
ISNAD Sakinc, İrem. “Numerical Solution of a Quasilinear Parabolic Problem With Periodic Boundary Condition”. Hacettepe Journal of Mathematics and Statistics 39/2 (February 2010), 183-189.
JAMA Sakinc İ. Numerical Solution of a Quasilinear Parabolic Problem with Periodic Boundary Condition. Hacettepe Journal of Mathematics and Statistics. 2010;39:183–189.
MLA Sakinc, İrem. “Numerical Solution of a Quasilinear Parabolic Problem With Periodic Boundary Condition”. Hacettepe Journal of Mathematics and Statistics, vol. 39, no. 2, 2010, pp. 183-9.
Vancouver Sakinc İ. Numerical Solution of a Quasilinear Parabolic Problem with Periodic Boundary Condition. Hacettepe Journal of Mathematics and Statistics. 2010;39(2):183-9.