BibTex RIS Cite

Intrinsic Equations for a Generalized Relaxed Elastic Line on an Oriented Surface

Year 2010, Volume: 39 Issue: 2, 197 - 203, 01.02.2010

References

  • Blaschke, W. Vorlesungen ¨uber Differential Geometrie I, (Verlag from Julius Springer, Berlin, 1930).
  • Carmo, M. P. Differential Geometry of Curves and Surfaces (Prectice-Hall, Inc., Englewood Cliffs, New Jersey, 1976).
  • Capovilla, R., Chryssomalakos, C. and Guven, J. Hamiltonians for curves, J. Phys. A: Math. Gen. 35, 6571–6587, 2002.
  • Gray, A. Modern Differential Geometry of Curves and Surfaces with Mathematica (2nd ed. Boca Raton, FL: CRC Press, 1997).
  • Languer, J. Recursion in Curve Geometry, New York J. Math. 5, 25–51, 1999.
  • Manning, G. S. Relaxed elastic line on a curved surface, Quart. Appl. Math. 45 (3), 515–527, 1987.
  • Millman, R and Parker, G. Elements Of Differential Geometry (Prectice-Hall Inc., Engle- wood Cliffs, New Jersey,1977).
  • Nickerson, H. K. and Manning, G. S. Intrinsic equations for a relaxed elastic line on an oriented surface, Geometriae Dedicate 27, 127–136, 1988.
  • Oprea, J. Differential Geometry and Its Applications (Prectice-Hall Inc., New Jersey, 1997).
  • O’Neill, B. Elementary Differential Geometry (Academic Pres Inc., New York, 1966).

Intrinsic Equations for a Generalized Relaxed Elastic Line on an Oriented Surface

Year 2010, Volume: 39 Issue: 2, 197 - 203, 01.02.2010

References

  • Blaschke, W. Vorlesungen ¨uber Differential Geometrie I, (Verlag from Julius Springer, Berlin, 1930).
  • Carmo, M. P. Differential Geometry of Curves and Surfaces (Prectice-Hall, Inc., Englewood Cliffs, New Jersey, 1976).
  • Capovilla, R., Chryssomalakos, C. and Guven, J. Hamiltonians for curves, J. Phys. A: Math. Gen. 35, 6571–6587, 2002.
  • Gray, A. Modern Differential Geometry of Curves and Surfaces with Mathematica (2nd ed. Boca Raton, FL: CRC Press, 1997).
  • Languer, J. Recursion in Curve Geometry, New York J. Math. 5, 25–51, 1999.
  • Manning, G. S. Relaxed elastic line on a curved surface, Quart. Appl. Math. 45 (3), 515–527, 1987.
  • Millman, R and Parker, G. Elements Of Differential Geometry (Prectice-Hall Inc., Engle- wood Cliffs, New Jersey,1977).
  • Nickerson, H. K. and Manning, G. S. Intrinsic equations for a relaxed elastic line on an oriented surface, Geometriae Dedicate 27, 127–136, 1988.
  • Oprea, J. Differential Geometry and Its Applications (Prectice-Hall Inc., New Jersey, 1997).
  • O’Neill, B. Elementary Differential Geometry (Academic Pres Inc., New York, 1966).
There are 10 citations in total.

Details

Primary Language Turkish
Journal Section Mathematics
Authors

Ali Görgülü This is me

Cumali Ekici This is me

Publication Date February 1, 2010
Published in Issue Year 2010 Volume: 39 Issue: 2

Cite

APA Görgülü, A., & Ekici, C. (2010). Intrinsic Equations for a Generalized Relaxed Elastic Line on an Oriented Surface. Hacettepe Journal of Mathematics and Statistics, 39(2), 197-203.
AMA Görgülü A, Ekici C. Intrinsic Equations for a Generalized Relaxed Elastic Line on an Oriented Surface. Hacettepe Journal of Mathematics and Statistics. February 2010;39(2):197-203.
Chicago Görgülü, Ali, and Cumali Ekici. “Intrinsic Equations for a Generalized Relaxed Elastic Line on an Oriented Surface”. Hacettepe Journal of Mathematics and Statistics 39, no. 2 (February 2010): 197-203.
EndNote Görgülü A, Ekici C (February 1, 2010) Intrinsic Equations for a Generalized Relaxed Elastic Line on an Oriented Surface. Hacettepe Journal of Mathematics and Statistics 39 2 197–203.
IEEE A. Görgülü and C. Ekici, “Intrinsic Equations for a Generalized Relaxed Elastic Line on an Oriented Surface”, Hacettepe Journal of Mathematics and Statistics, vol. 39, no. 2, pp. 197–203, 2010.
ISNAD Görgülü, Ali - Ekici, Cumali. “Intrinsic Equations for a Generalized Relaxed Elastic Line on an Oriented Surface”. Hacettepe Journal of Mathematics and Statistics 39/2 (February 2010), 197-203.
JAMA Görgülü A, Ekici C. Intrinsic Equations for a Generalized Relaxed Elastic Line on an Oriented Surface. Hacettepe Journal of Mathematics and Statistics. 2010;39:197–203.
MLA Görgülü, Ali and Cumali Ekici. “Intrinsic Equations for a Generalized Relaxed Elastic Line on an Oriented Surface”. Hacettepe Journal of Mathematics and Statistics, vol. 39, no. 2, 2010, pp. 197-03.
Vancouver Görgülü A, Ekici C. Intrinsic Equations for a Generalized Relaxed Elastic Line on an Oriented Surface. Hacettepe Journal of Mathematics and Statistics. 2010;39(2):197-203.