Research Article
BibTex RIS Cite
Year 2010, Volume: 39 Issue: 2, 241 - 253, 01.02.2010

Abstract

References

  • Becker, M. Global approximation theorems for Sz´asz-Mirakyan and Baskakov operators in polynomial weight spaces, Indiana University Mathematics Journal 27 (1), 127–142, 1978.
  • Chen, W. and Guo, S. On the rate of convergence of the Gamma Operator for functions of bounded variation, Approx. Theory Appl. 1 (5), 85–96, 1985.
  • DeVore, R. A. and Lorentz, G. G. Constructive Approximation (Springer-Verlag, Berlin, ). Ditzian, Z. Direct estimate for Bernstein polynomials, J. Approx. Theory 79, 165–166, 1994.
  • Duman, O. and ¨Ozarslan, M. A. Global approximation results for modified Szasz-Mirakjan operators, Taiwanese J. Math. (accepted). Felten, M. Local and global approximation theorems for positive linear operators, J. Approx. Theory 94, 396–419, 1998.
  • Finta, Z. Direct local and global approximation theorems for some linear positive operators, Analysis in Theory and Applications 20 (4), 307–322, 2004.
  • Izgi, A. Order of approximation of functions of two variables by a new type Gamma oper- ators, General Mathematics 17 (1), 23–32, 2009.
  • Izgi, A. and B¨uy¨ukyazici, I. Approximation and rate of approximation on unbounded inter- vals, Kastamonu Edu. Journal Okt. 11 (2), 451–460, 2003 (in Turkish).
  • Karsli, H. Rate of convergence of a new Gamma Type Operators for functions with deriva- tives of bounded variation, Math. Comput. Modelling 45 (5-6), 617–624, 2007.
  • Karsli, H., Gupta, V. and Izgi, A. Rate of pointwise convergence of a new kind of gamma operators for functions of bounded variation, Appl. Math. Letters 22 (4), 505–510, 2009.
  • Lupas, A. and M¨uller, M. Approximationseigenschaften der Gammaoperatoren, Math. Zeitschr. 98, 208–226, 1967.
  • Mazhar, S. M. Approximation by positive operators on infinite intervals, Mathematica Balkanica 5 (2), 99–104, 1991.
  • ¨Ozarslan, M. A. and Duman, O. Local approximation results for Szasz-Mirakjan type oper- ators Swiderski, T. Global approximation theorems for the generalized modified Szasz- Mirakyan operators in polynomial weighted spaces, Demonstratio Math. 36 (2), 383–392, 2003.
  • Totik, V. The Gamma operators in Lpspaces, Publ. Math. 32, 43–55, 1985.
  • Xu, X. -W. and Wang, J. Y. Approximation properties of modified Gamma operators, J. Math. Anal. Appl. 332, 798–813, 2007.
  • Zeng, X. -M. Approximation properties of gamma operators, J. Math. Anal. Appl. 311 (2), –401, 2005.

Direct local and global approximation results for Operators of Gamma Type

Year 2010, Volume: 39 Issue: 2, 241 - 253, 01.02.2010

Abstract

In this paper some direct local and global approximation results are
obtained for the modified Gamma operators defined by A. Izgi and
B¨uy¨ukyazıcı (Approximation and rate of approximation on unbounded
intervals, Kastamonu Edu. J. Okt. 11 (2), 451–460, 2003 (in Turkish)), and independently by H. Karsli (Rate of convergence of a new
Gamma Type Operator for functions with derivatives of bounded variation, Math. Comput. Modelling 45 (5-6), 617–624, 2007). Furthermore, a Voronoskaya type theorem is given for these operators.

References

  • Becker, M. Global approximation theorems for Sz´asz-Mirakyan and Baskakov operators in polynomial weight spaces, Indiana University Mathematics Journal 27 (1), 127–142, 1978.
  • Chen, W. and Guo, S. On the rate of convergence of the Gamma Operator for functions of bounded variation, Approx. Theory Appl. 1 (5), 85–96, 1985.
  • DeVore, R. A. and Lorentz, G. G. Constructive Approximation (Springer-Verlag, Berlin, ). Ditzian, Z. Direct estimate for Bernstein polynomials, J. Approx. Theory 79, 165–166, 1994.
  • Duman, O. and ¨Ozarslan, M. A. Global approximation results for modified Szasz-Mirakjan operators, Taiwanese J. Math. (accepted). Felten, M. Local and global approximation theorems for positive linear operators, J. Approx. Theory 94, 396–419, 1998.
  • Finta, Z. Direct local and global approximation theorems for some linear positive operators, Analysis in Theory and Applications 20 (4), 307–322, 2004.
  • Izgi, A. Order of approximation of functions of two variables by a new type Gamma oper- ators, General Mathematics 17 (1), 23–32, 2009.
  • Izgi, A. and B¨uy¨ukyazici, I. Approximation and rate of approximation on unbounded inter- vals, Kastamonu Edu. Journal Okt. 11 (2), 451–460, 2003 (in Turkish).
  • Karsli, H. Rate of convergence of a new Gamma Type Operators for functions with deriva- tives of bounded variation, Math. Comput. Modelling 45 (5-6), 617–624, 2007.
  • Karsli, H., Gupta, V. and Izgi, A. Rate of pointwise convergence of a new kind of gamma operators for functions of bounded variation, Appl. Math. Letters 22 (4), 505–510, 2009.
  • Lupas, A. and M¨uller, M. Approximationseigenschaften der Gammaoperatoren, Math. Zeitschr. 98, 208–226, 1967.
  • Mazhar, S. M. Approximation by positive operators on infinite intervals, Mathematica Balkanica 5 (2), 99–104, 1991.
  • ¨Ozarslan, M. A. and Duman, O. Local approximation results for Szasz-Mirakjan type oper- ators Swiderski, T. Global approximation theorems for the generalized modified Szasz- Mirakyan operators in polynomial weighted spaces, Demonstratio Math. 36 (2), 383–392, 2003.
  • Totik, V. The Gamma operators in Lpspaces, Publ. Math. 32, 43–55, 1985.
  • Xu, X. -W. and Wang, J. Y. Approximation properties of modified Gamma operators, J. Math. Anal. Appl. 332, 798–813, 2007.
  • Zeng, X. -M. Approximation properties of gamma operators, J. Math. Anal. Appl. 311 (2), –401, 2005.
There are 15 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Mathematics
Authors

Harun Karsli This is me

Ali Özarslan This is me

Publication Date February 1, 2010
Published in Issue Year 2010 Volume: 39 Issue: 2

Cite

APA Karsli, H., & Özarslan, A. (2010). Direct local and global approximation results for Operators of Gamma Type. Hacettepe Journal of Mathematics and Statistics, 39(2), 241-253.
AMA Karsli H, Özarslan A. Direct local and global approximation results for Operators of Gamma Type. Hacettepe Journal of Mathematics and Statistics. February 2010;39(2):241-253.
Chicago Karsli, Harun, and Ali Özarslan. “Direct Local and Global Approximation Results for Operators of Gamma Type”. Hacettepe Journal of Mathematics and Statistics 39, no. 2 (February 2010): 241-53.
EndNote Karsli H, Özarslan A (February 1, 2010) Direct local and global approximation results for Operators of Gamma Type. Hacettepe Journal of Mathematics and Statistics 39 2 241–253.
IEEE H. Karsli and A. Özarslan, “Direct local and global approximation results for Operators of Gamma Type”, Hacettepe Journal of Mathematics and Statistics, vol. 39, no. 2, pp. 241–253, 2010.
ISNAD Karsli, Harun - Özarslan, Ali. “Direct Local and Global Approximation Results for Operators of Gamma Type”. Hacettepe Journal of Mathematics and Statistics 39/2 (February 2010), 241-253.
JAMA Karsli H, Özarslan A. Direct local and global approximation results for Operators of Gamma Type. Hacettepe Journal of Mathematics and Statistics. 2010;39:241–253.
MLA Karsli, Harun and Ali Özarslan. “Direct Local and Global Approximation Results for Operators of Gamma Type”. Hacettepe Journal of Mathematics and Statistics, vol. 39, no. 2, 2010, pp. 241-53.
Vancouver Karsli H, Özarslan A. Direct local and global approximation results for Operators of Gamma Type. Hacettepe Journal of Mathematics and Statistics. 2010;39(2):241-53.