Research Article
BibTex RIS Cite

A Subclass of Analytic Functions Associated with the Hurwitz-Lerch Zeta Function

Year 2010, Volume: 39 Issue: 2, 265 - 272, 01.02.2010

Abstract

References

  • Alexander, J. W. Functions which map the interior of the unit circle upon simple regions, Ann. of Math. 17, 12–22, 1915.
  • Altintas, O. A subclass of analytic functions with negative coefficients, Hacettepe Univ. Bull. Nat. Sciences & Engineering 19, 15–24, 1990.
  • Bernardi, S. D. Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135, 429–446, 1969. [4] Choi, J. and Srivastava, H. M. Certain families of series associated with the Hurwitz-Lerch Zeta function, Appl. Math. Comput. 170, 399–409, 2005.
  • Ferreira, C. and L´opez, J. L. Asymptotic expansions of the Hurwitz-Lerch Zeta function, J. Math. Anal. Appl. 298, 210–224, 2004.
  • Flett, T. M. The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. 38, 746–765, 1972.
  • Garg, M., Jain, K. and Srivastava, H. M. Some relationships between the generalized Apostol- Bernoulli polynomials and Hurwitz-Lerch Zeta functions, Integral Transform. Spec. Funct. 17, 803–815, 2006.
  • Jung, I. B., Kim, Y. C. and Srivastava, H. M. The Hardy space of analytic functions asso- ciated with certain one-parameter families of integral operators, J. Math. Anal. Appl. 176, 138–147, 1993. [9] Owa, S. and Lee, S. K. Certain generalized class of analytic functions with negative coeffi- cients, Bull. Cal. Math. Soc. 82, 284–289, 1990.
  • Lin, S. -D. and Srivastava, H. M. Some families of the Hurwitz-Lerch Zeta functions and associated fractional derivative and other integral representations, Appl. Math. Comput. 154, 725–733, 2004.
  • Lin, S. -D., Srivastava, H. M. and Wang, P. -Y. Some expansion formulas for a class of generalized Hurwitz-Lerch Zeta functions, Integral Transform. Spec. Funct. 17, 817–827, 2006.
  • Prajapat, J. K. and Goyal, S. P. Applications of Srivastava-Attiya operator to the classes of strongly starlike and strongly convex functions, J. Math. Inequal. 3, 129–137, 2009.
  • Riaducanu, D. and Srivastava, H. M. A new class of analytic functions defined by means of a convolution operator involving the Hurwitz-Lerch Zeta function, Integral Transform. Spec. Funct. 18, 933–943, 2007.
  • Silverman, H. Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51, 109–116, 1975. [15] Srivastava, H. M. and Attiya, A. A. An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, Integral Transform. Spec. Funct. 18, 207–216, 2007.
  • Srivastava, H. M. and Choi, J. Series associated with the Zeta and related functions (Kluwer Academic Publishers, Dordrecht, Boston, London, 2001).

A Subclass of Analytic Functions Associated with the Hurwitz-Lerch Zeta Function

Year 2010, Volume: 39 Issue: 2, 265 - 272, 01.02.2010

Abstract

Making use of a convolution operator involving the Hurwitz-Lerch Zeta function, we introduce a new class of analytic functions PT(λ, α, β) defined in the open unit disc, and investigate its various characteristics. Further we obtained distortion bounds, extreme points and radii of close-to-convexity, starlikeness and convexity for functions belonging to the class PT(λ, α, β).

References

  • Alexander, J. W. Functions which map the interior of the unit circle upon simple regions, Ann. of Math. 17, 12–22, 1915.
  • Altintas, O. A subclass of analytic functions with negative coefficients, Hacettepe Univ. Bull. Nat. Sciences & Engineering 19, 15–24, 1990.
  • Bernardi, S. D. Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135, 429–446, 1969. [4] Choi, J. and Srivastava, H. M. Certain families of series associated with the Hurwitz-Lerch Zeta function, Appl. Math. Comput. 170, 399–409, 2005.
  • Ferreira, C. and L´opez, J. L. Asymptotic expansions of the Hurwitz-Lerch Zeta function, J. Math. Anal. Appl. 298, 210–224, 2004.
  • Flett, T. M. The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. 38, 746–765, 1972.
  • Garg, M., Jain, K. and Srivastava, H. M. Some relationships between the generalized Apostol- Bernoulli polynomials and Hurwitz-Lerch Zeta functions, Integral Transform. Spec. Funct. 17, 803–815, 2006.
  • Jung, I. B., Kim, Y. C. and Srivastava, H. M. The Hardy space of analytic functions asso- ciated with certain one-parameter families of integral operators, J. Math. Anal. Appl. 176, 138–147, 1993. [9] Owa, S. and Lee, S. K. Certain generalized class of analytic functions with negative coeffi- cients, Bull. Cal. Math. Soc. 82, 284–289, 1990.
  • Lin, S. -D. and Srivastava, H. M. Some families of the Hurwitz-Lerch Zeta functions and associated fractional derivative and other integral representations, Appl. Math. Comput. 154, 725–733, 2004.
  • Lin, S. -D., Srivastava, H. M. and Wang, P. -Y. Some expansion formulas for a class of generalized Hurwitz-Lerch Zeta functions, Integral Transform. Spec. Funct. 17, 817–827, 2006.
  • Prajapat, J. K. and Goyal, S. P. Applications of Srivastava-Attiya operator to the classes of strongly starlike and strongly convex functions, J. Math. Inequal. 3, 129–137, 2009.
  • Riaducanu, D. and Srivastava, H. M. A new class of analytic functions defined by means of a convolution operator involving the Hurwitz-Lerch Zeta function, Integral Transform. Spec. Funct. 18, 933–943, 2007.
  • Silverman, H. Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51, 109–116, 1975. [15] Srivastava, H. M. and Attiya, A. A. An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, Integral Transform. Spec. Funct. 18, 207–216, 2007.
  • Srivastava, H. M. and Choi, J. Series associated with the Zeta and related functions (Kluwer Academic Publishers, Dordrecht, Boston, London, 2001).
There are 13 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Mathematics
Authors

Gangadharan Murugusundaramoorthy This is me

Publication Date February 1, 2010
Published in Issue Year 2010 Volume: 39 Issue: 2

Cite

APA Murugusundaramoorthy, G. (2010). A Subclass of Analytic Functions Associated with the Hurwitz-Lerch Zeta Function. Hacettepe Journal of Mathematics and Statistics, 39(2), 265-272.
AMA Murugusundaramoorthy G. A Subclass of Analytic Functions Associated with the Hurwitz-Lerch Zeta Function. Hacettepe Journal of Mathematics and Statistics. February 2010;39(2):265-272.
Chicago Murugusundaramoorthy, Gangadharan. “A Subclass of Analytic Functions Associated With the Hurwitz-Lerch Zeta Function”. Hacettepe Journal of Mathematics and Statistics 39, no. 2 (February 2010): 265-72.
EndNote Murugusundaramoorthy G (February 1, 2010) A Subclass of Analytic Functions Associated with the Hurwitz-Lerch Zeta Function. Hacettepe Journal of Mathematics and Statistics 39 2 265–272.
IEEE G. Murugusundaramoorthy, “A Subclass of Analytic Functions Associated with the Hurwitz-Lerch Zeta Function”, Hacettepe Journal of Mathematics and Statistics, vol. 39, no. 2, pp. 265–272, 2010.
ISNAD Murugusundaramoorthy, Gangadharan. “A Subclass of Analytic Functions Associated With the Hurwitz-Lerch Zeta Function”. Hacettepe Journal of Mathematics and Statistics 39/2 (February 2010), 265-272.
JAMA Murugusundaramoorthy G. A Subclass of Analytic Functions Associated with the Hurwitz-Lerch Zeta Function. Hacettepe Journal of Mathematics and Statistics. 2010;39:265–272.
MLA Murugusundaramoorthy, Gangadharan. “A Subclass of Analytic Functions Associated With the Hurwitz-Lerch Zeta Function”. Hacettepe Journal of Mathematics and Statistics, vol. 39, no. 2, 2010, pp. 265-72.
Vancouver Murugusundaramoorthy G. A Subclass of Analytic Functions Associated with the Hurwitz-Lerch Zeta Function. Hacettepe Journal of Mathematics and Statistics. 2010;39(2):265-72.