Research Article
BibTex RIS Cite

New Results Related to the Convexity and Starlikeness of the Bernardi Integral Operator

Year 2009, Volume: 38 Issue: 2, 137 - 143, 01.02.2009

Abstract

References

  • Bernardi, S. D. Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135, 429–446, 1969.
  • Lewandowski, Z., Miller, S. S. and Zlotkiewicz, E. Generating functions for some classes of univalent functions, Proc. Amer. Math. Soc. 56, 111–117, 1976.
  • Miller, S. S. and Mocanu, P. T. Differential subordinations and univalent functions, Michigan Math. J. 28, 157–171, 1981.
  • Miller, S. S. and Mocanu, P. T. Differential subordinations and inequalities in the complex plane, J. Diff. Eqns. 67 (2), 199–211, 1987.
  • Miller, S. S. and Mocanu, P. T. Classes of univalent integral operators, J. Math. Anal. Appl. 157(1), 147–165, 1991.
  • Miller, S. S. and Mocanu, P. T. Differential Subordinations. Theory and Applications (Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 2000).
  • Mocanu, P. T., Bulboac˘a, T. and S˘al˘agean, S¸t. G. Teoria geometric˘a a funct¸iilor univalente (Casa C˘art¸ii de S¸tiint¸˘a, Cluj-Napoca, 1999).
  • Pascu, N. N. Alpha-close-to-convex functions, Romanian-Finish Seminar on Complex Anal- ysis, Springer Berlin, 331–335, 1979.

New Results Related to the Convexity and Starlikeness of the Bernardi Integral Operator

Year 2009, Volume: 38 Issue: 2, 137 - 143, 01.02.2009

Abstract

In (Lewandowski, Z., Miller, S. S. and Zlotkiewicz, E. Generating functions for some classes of univalent functions, Proc. Amer. Math. Soc. 56, 111–117, 1976) and (Pascu, N. N. Alpha-close-to-convex functions, Romanian–Finish Seminar on Complex Analysis, Springer Berlin, 331– 335, 1979) it has been proved that the integral operator defined by S. D. Bernardi (Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135, 429–446, 1969) and given by (1) Lγ(f)(z) = F(z) = γ + 1
z γ Z z 0 f(t)t γ−1 dt, z ∈ U preserves certain classes of univalent functions, such as the class of starlike functions, the class of convex functions and the class of closeto-convex functions. In this paper we determine conditions that a function f ∈ A needs to satisfy in order that the function F given by (1) be convex. We alsoprove two duality theorems between the classes K−12γand S∗, andbetween K−12γand S∗−12γ, respectively.

References

  • Bernardi, S. D. Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135, 429–446, 1969.
  • Lewandowski, Z., Miller, S. S. and Zlotkiewicz, E. Generating functions for some classes of univalent functions, Proc. Amer. Math. Soc. 56, 111–117, 1976.
  • Miller, S. S. and Mocanu, P. T. Differential subordinations and univalent functions, Michigan Math. J. 28, 157–171, 1981.
  • Miller, S. S. and Mocanu, P. T. Differential subordinations and inequalities in the complex plane, J. Diff. Eqns. 67 (2), 199–211, 1987.
  • Miller, S. S. and Mocanu, P. T. Classes of univalent integral operators, J. Math. Anal. Appl. 157(1), 147–165, 1991.
  • Miller, S. S. and Mocanu, P. T. Differential Subordinations. Theory and Applications (Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 2000).
  • Mocanu, P. T., Bulboac˘a, T. and S˘al˘agean, S¸t. G. Teoria geometric˘a a funct¸iilor univalente (Casa C˘art¸ii de S¸tiint¸˘a, Cluj-Napoca, 1999).
  • Pascu, N. N. Alpha-close-to-convex functions, Romanian-Finish Seminar on Complex Anal- ysis, Springer Berlin, 331–335, 1979.
There are 8 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Mathematics
Authors

G. İ. Oros This is me

Georgia İrina Oros This is me

Publication Date February 1, 2009
Published in Issue Year 2009 Volume: 38 Issue: 2

Cite

APA Oros, G. İ., & Oros, G. İ. (2009). New Results Related to the Convexity and Starlikeness of the Bernardi Integral Operator. Hacettepe Journal of Mathematics and Statistics, 38(2), 137-143.
AMA Oros Gİ, Oros Gİ. New Results Related to the Convexity and Starlikeness of the Bernardi Integral Operator. Hacettepe Journal of Mathematics and Statistics. February 2009;38(2):137-143.
Chicago Oros, G. İ., and Georgia İrina Oros. “New Results Related to the Convexity and Starlikeness of the Bernardi Integral Operator”. Hacettepe Journal of Mathematics and Statistics 38, no. 2 (February 2009): 137-43.
EndNote Oros Gİ, Oros Gİ (February 1, 2009) New Results Related to the Convexity and Starlikeness of the Bernardi Integral Operator. Hacettepe Journal of Mathematics and Statistics 38 2 137–143.
IEEE G. İ. Oros and G. İ. Oros, “New Results Related to the Convexity and Starlikeness of the Bernardi Integral Operator”, Hacettepe Journal of Mathematics and Statistics, vol. 38, no. 2, pp. 137–143, 2009.
ISNAD Oros, G. İ. - Oros, Georgia İrina. “New Results Related to the Convexity and Starlikeness of the Bernardi Integral Operator”. Hacettepe Journal of Mathematics and Statistics 38/2 (February 2009), 137-143.
JAMA Oros Gİ, Oros Gİ. New Results Related to the Convexity and Starlikeness of the Bernardi Integral Operator. Hacettepe Journal of Mathematics and Statistics. 2009;38:137–143.
MLA Oros, G. İ. and Georgia İrina Oros. “New Results Related to the Convexity and Starlikeness of the Bernardi Integral Operator”. Hacettepe Journal of Mathematics and Statistics, vol. 38, no. 2, 2009, pp. 137-43.
Vancouver Oros Gİ, Oros Gİ. New Results Related to the Convexity and Starlikeness of the Bernardi Integral Operator. Hacettepe Journal of Mathematics and Statistics. 2009;38(2):137-43.