BibTex RIS Cite

Random Fixed Points and Invariant Random Approximation in Non-Convex Domains

Year 2008, Volume: 37 Issue: 2, 81 - 88, 01.02.2008

References

  • Beg, I. and Shahzad, N. Random fixed points and approximations in random convex metric spaces, J. Appl. Math. Stoch. Anal. 6, 237–246, 1993.
  • Beg, I. and Shahzad, N. Random fixed points of random multivalued operators on polish spaces, Nonlinear Anal. 20, 835–847, 1993.
  • Beg, I. and Shahzad, N. Applications of the proximity map to Random fixed points theorems in Hilbert space, J. Math. Anal. Appl., 196, 606–613, 1995.
  • Beg, I. and Shahzad, N. On invariant random approximations, Approx. Theory Appl. 12, –72, 1996.
  • Bharucha-Reid, A. T. Fixed point theorem in probabilistic analysis, Bull. Amer. Math. Soc. , 641–645, 1976.
  • Dotson, W. G. Jr On fixed point of nonexpansive mappings in nonconvex sets, Proc. Amer. Math. Soc. 38, 155–156, 1973.
  • Himmerberg, C. J. Measurable relations, Fund. Math. 87, 53–72, 1975.
  • Khan, A. R., Thaheem, A. B and Hussain, N. Random fixed points and random approxima- tions, South. Asian Bull. Math. 27, 289–294, 2003.
  • Khan, A. R., Latif, A., Bano A. and Hussain, N. Some results on common fixed points and best approximation, Tamkang J. Math. 36 (1), 33–38, 2005.
  • K¨othe, G. Topological vector spaces I (Springer-Verlag, Berlin, 1969).
  • Kuratoski, K. and Ryll-Nardzewski, C. A general theorem on selectors, Bull Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys. 13, 397–403, 1965.
  • Lin, T. C. Random approximations and random fixed point theorems for nonsself maps, Proc. Amer. Math. Soc. 103, 1129–1135, 1988.
  • Meinardus, G. Invarianze bei Linearen Approximationen, Arch. Rational Mech. Anal. 14, –303, 1963.
  • Mukherjee, R. N. and Som, T. A note on an application of a fixed point theorem in approx- imation theory, Indian J. Pure Appl. Math. 16 (3), 243–244, 1985.
  • Nashine, H. K. Invariant approximations, generalized I-nonexpansive mappings and non- convex domain, Tamkang J. Math. 39 (1), 53–62, 2007.
  • Papagergiou, N. S. Random fixed point theorems for measurable multifunctions in Banach spaces, Proc. Amer. Math. Soc. 97, 507–514, 1986.
  • Papagergiou, N. S. Random fixed points and random differential inclusions, Inter. J. Math. Math. Sci. 11, 551–560, 1988.
  • O’Regan, D., Shahzad, N. and Agrawal, R. P. Random fixed point theory in spaces with two metrices, J. Appl. Math. Stoch. Anal. 16 (2), 171–176, 2003.
  • Rudin, W. Functional Analysis, 2nd Ed. (International Series in Pure and Applied Mathe- matics, McGraw-Hill, New York, 1991).
  • Singh, S. P. An application of a fixed point theorem to approximation theory, J. Approx. Theory, 25, 89–90, 1979.
  • Tan, K. K. and Yuan, X. Z. Random fixed point theorems and approximation in cones, J. Math. Anal. Appl. 185, 378–390, 1994.
  • Xu, H. K. Some random fixed point theorems for condensing and nonexpansive operators, Proc. Amer. Math. Soc. 110, 495–500, 1990.

Random Fixed Points and Invariant Random Approximation in Non-Convex Domains

Year 2008, Volume: 37 Issue: 2, 81 - 88, 01.02.2008

References

  • Beg, I. and Shahzad, N. Random fixed points and approximations in random convex metric spaces, J. Appl. Math. Stoch. Anal. 6, 237–246, 1993.
  • Beg, I. and Shahzad, N. Random fixed points of random multivalued operators on polish spaces, Nonlinear Anal. 20, 835–847, 1993.
  • Beg, I. and Shahzad, N. Applications of the proximity map to Random fixed points theorems in Hilbert space, J. Math. Anal. Appl., 196, 606–613, 1995.
  • Beg, I. and Shahzad, N. On invariant random approximations, Approx. Theory Appl. 12, –72, 1996.
  • Bharucha-Reid, A. T. Fixed point theorem in probabilistic analysis, Bull. Amer. Math. Soc. , 641–645, 1976.
  • Dotson, W. G. Jr On fixed point of nonexpansive mappings in nonconvex sets, Proc. Amer. Math. Soc. 38, 155–156, 1973.
  • Himmerberg, C. J. Measurable relations, Fund. Math. 87, 53–72, 1975.
  • Khan, A. R., Thaheem, A. B and Hussain, N. Random fixed points and random approxima- tions, South. Asian Bull. Math. 27, 289–294, 2003.
  • Khan, A. R., Latif, A., Bano A. and Hussain, N. Some results on common fixed points and best approximation, Tamkang J. Math. 36 (1), 33–38, 2005.
  • K¨othe, G. Topological vector spaces I (Springer-Verlag, Berlin, 1969).
  • Kuratoski, K. and Ryll-Nardzewski, C. A general theorem on selectors, Bull Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys. 13, 397–403, 1965.
  • Lin, T. C. Random approximations and random fixed point theorems for nonsself maps, Proc. Amer. Math. Soc. 103, 1129–1135, 1988.
  • Meinardus, G. Invarianze bei Linearen Approximationen, Arch. Rational Mech. Anal. 14, –303, 1963.
  • Mukherjee, R. N. and Som, T. A note on an application of a fixed point theorem in approx- imation theory, Indian J. Pure Appl. Math. 16 (3), 243–244, 1985.
  • Nashine, H. K. Invariant approximations, generalized I-nonexpansive mappings and non- convex domain, Tamkang J. Math. 39 (1), 53–62, 2007.
  • Papagergiou, N. S. Random fixed point theorems for measurable multifunctions in Banach spaces, Proc. Amer. Math. Soc. 97, 507–514, 1986.
  • Papagergiou, N. S. Random fixed points and random differential inclusions, Inter. J. Math. Math. Sci. 11, 551–560, 1988.
  • O’Regan, D., Shahzad, N. and Agrawal, R. P. Random fixed point theory in spaces with two metrices, J. Appl. Math. Stoch. Anal. 16 (2), 171–176, 2003.
  • Rudin, W. Functional Analysis, 2nd Ed. (International Series in Pure and Applied Mathe- matics, McGraw-Hill, New York, 1991).
  • Singh, S. P. An application of a fixed point theorem to approximation theory, J. Approx. Theory, 25, 89–90, 1979.
  • Tan, K. K. and Yuan, X. Z. Random fixed point theorems and approximation in cones, J. Math. Anal. Appl. 185, 378–390, 1994.
  • Xu, H. K. Some random fixed point theorems for condensing and nonexpansive operators, Proc. Amer. Math. Soc. 110, 495–500, 1990.
There are 22 citations in total.

Details

Primary Language Turkish
Journal Section Mathematics
Authors

H. K. Nashine This is me

Publication Date February 1, 2008
Published in Issue Year 2008 Volume: 37 Issue: 2

Cite

APA Nashine, H. K. (2008). Random Fixed Points and Invariant Random Approximation in Non-Convex Domains. Hacettepe Journal of Mathematics and Statistics, 37(2), 81-88.
AMA Nashine HK. Random Fixed Points and Invariant Random Approximation in Non-Convex Domains. Hacettepe Journal of Mathematics and Statistics. February 2008;37(2):81-88.
Chicago Nashine, H. K. “Random Fixed Points and Invariant Random Approximation in Non-Convex Domains”. Hacettepe Journal of Mathematics and Statistics 37, no. 2 (February 2008): 81-88.
EndNote Nashine HK (February 1, 2008) Random Fixed Points and Invariant Random Approximation in Non-Convex Domains. Hacettepe Journal of Mathematics and Statistics 37 2 81–88.
IEEE H. K. Nashine, “Random Fixed Points and Invariant Random Approximation in Non-Convex Domains”, Hacettepe Journal of Mathematics and Statistics, vol. 37, no. 2, pp. 81–88, 2008.
ISNAD Nashine, H. K. “Random Fixed Points and Invariant Random Approximation in Non-Convex Domains”. Hacettepe Journal of Mathematics and Statistics 37/2 (February 2008), 81-88.
JAMA Nashine HK. Random Fixed Points and Invariant Random Approximation in Non-Convex Domains. Hacettepe Journal of Mathematics and Statistics. 2008;37:81–88.
MLA Nashine, H. K. “Random Fixed Points and Invariant Random Approximation in Non-Convex Domains”. Hacettepe Journal of Mathematics and Statistics, vol. 37, no. 2, 2008, pp. 81-88.
Vancouver Nashine HK. Random Fixed Points and Invariant Random Approximation in Non-Convex Domains. Hacettepe Journal of Mathematics and Statistics. 2008;37(2):81-8.