Araştırma Makalesi
BibTex RIS Kaynak Göster

SOME APPLICATIONS OF FRACTIONAL CALCULUS OPERATORS TO THE ANALYTIC PART OF HARMONIC UNIVALENT FUNCTIONS

Yıl 2005, Cilt: 34 Sayı: 1, 1 - 7, 01.02.2005

Öz

Recently, Jahangiri [4] studied the harmonic starlike functions of order α, and he defined the class TH(α) consisting of functions f = h + g¯, where h and g are the analytic and the co-analytic part of the function f, respectively. In [3] the author introduced the class TH(α, β) of analytic functions and he proved various coefficient inequalities and growth and distortion theorems, and obtained the radius of convexity for the function h if the function f belongs to the classes TH(α) and TH(α, β). In this paper, we derive various distortion theorems for the fractional calculus and the fractional integral operator of the function h, the analytic part of the function f, if the function f belongs to the class TH(α, β).

Kaynakça

  • Clunie, J. and Sheil-Small, T. Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9, 3–25, 1984.
  • Erd´elyi, A., Magnus, W., Oberhettinger, F. and Tricemi, F. G. Tables of Integral Trans- forms, vol. II, (McGraw-Hill Book Co., NewYork, Toronto and London, 1954).
  • Frasin, B. A. On the analytic part of harmonic univalent functions, Bull. Korain J. Math. Soc. 42 (3), 563–569, 2005.
  • Jahangiri, J. M. Harmonic functions starlike in the unit disk, J. Math. Anal. Appl. 235, 470–477, 1999. [5] Jahangiri, J. M., Kim, Y. C. and H. M. Srivastava, H. M. Construction of a certain class of harmonic close-to-convex functions associated with the Alexander integral transform, Integral Transform. Spec. Funct. 14, 237–242, 2003.
  • Oldham, K. B. and Spanier, T. The Fractional Calculus: Theory and Applications of Differ- entiation and Integral to Arbitrary Order, (Academic Press, NewYork and London, 1974). [7] Owa, S. On the distortion theorems I, Kyungpook Math. J. 18, 53–59, 1978.
  • Owa, S., Saigo, M. and Srivastava, H. M. Some characterization theorems for starlike and convex functions involving a certain fractional integral operators, J. Math. Anal. 140, 419– 426, 1989.
  • Saigo, M. A remark on integral operators involving the Gauss hypergeometric functions, Math. Rep. College General Ed. Kyushu Univ. 11,135–143, 1978.
  • Samko, S. G., Kilbas, A. A. and Marchev, O. I. Integrals and Derivatives of Fractional Order and Some of Their Applications, (Russian), (Nauka i Teknika, Minsk, 1987).
  • Silverman, S. Harmonic univalent functions with negative coefficients, J. Math. Anal. Appl. 220, 283–289, 1998.
  • Silverman, H. and Silvia, E. M. Subclasses of harmonic univalent functions, New Zeal. J. Math. 28, 275–284, 1999.
  • Srivastava, H. M. and Buchman, R. G. Convolution Integral Equations with Special Func- tions Kernels, (John Wiely and Sons, NewYork, London, Sydney and Toronto, 1977).
  • Srivastava, H. M. and Owa, S. (Eds.), Univalent functions, Fractional Calculus, and Their Applications, (Halsted Press (Ellis Horworod Limited, Chichester), John Wiely and Sons, NewYork, Chichester, Brisbane and Toronto, 1989).
  • Srivastava, H. M. and Owa, S. An application of the fractional derivative, Mah. Japon. 29, 383–389, 1984. [16] Srivastava, H. M., Saigo, M. and Owa, S. A class of distortion theorems involving certain operators of fractional calculus, J. Math. Anal. Appl. 131, 412–420, 1988.

SOME APPLICATIONS OF FRACTIONAL CALCULUS OPERATORS TO THE ANALYTIC PART OF HARMONIC UNIVALENT FUNCTIONS

Yıl 2005, Cilt: 34 Sayı: 1, 1 - 7, 01.02.2005

Öz

Kaynakça

  • Clunie, J. and Sheil-Small, T. Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9, 3–25, 1984.
  • Erd´elyi, A., Magnus, W., Oberhettinger, F. and Tricemi, F. G. Tables of Integral Trans- forms, vol. II, (McGraw-Hill Book Co., NewYork, Toronto and London, 1954).
  • Frasin, B. A. On the analytic part of harmonic univalent functions, Bull. Korain J. Math. Soc. 42 (3), 563–569, 2005.
  • Jahangiri, J. M. Harmonic functions starlike in the unit disk, J. Math. Anal. Appl. 235, 470–477, 1999. [5] Jahangiri, J. M., Kim, Y. C. and H. M. Srivastava, H. M. Construction of a certain class of harmonic close-to-convex functions associated with the Alexander integral transform, Integral Transform. Spec. Funct. 14, 237–242, 2003.
  • Oldham, K. B. and Spanier, T. The Fractional Calculus: Theory and Applications of Differ- entiation and Integral to Arbitrary Order, (Academic Press, NewYork and London, 1974). [7] Owa, S. On the distortion theorems I, Kyungpook Math. J. 18, 53–59, 1978.
  • Owa, S., Saigo, M. and Srivastava, H. M. Some characterization theorems for starlike and convex functions involving a certain fractional integral operators, J. Math. Anal. 140, 419– 426, 1989.
  • Saigo, M. A remark on integral operators involving the Gauss hypergeometric functions, Math. Rep. College General Ed. Kyushu Univ. 11,135–143, 1978.
  • Samko, S. G., Kilbas, A. A. and Marchev, O. I. Integrals and Derivatives of Fractional Order and Some of Their Applications, (Russian), (Nauka i Teknika, Minsk, 1987).
  • Silverman, S. Harmonic univalent functions with negative coefficients, J. Math. Anal. Appl. 220, 283–289, 1998.
  • Silverman, H. and Silvia, E. M. Subclasses of harmonic univalent functions, New Zeal. J. Math. 28, 275–284, 1999.
  • Srivastava, H. M. and Buchman, R. G. Convolution Integral Equations with Special Func- tions Kernels, (John Wiely and Sons, NewYork, London, Sydney and Toronto, 1977).
  • Srivastava, H. M. and Owa, S. (Eds.), Univalent functions, Fractional Calculus, and Their Applications, (Halsted Press (Ellis Horworod Limited, Chichester), John Wiely and Sons, NewYork, Chichester, Brisbane and Toronto, 1989).
  • Srivastava, H. M. and Owa, S. An application of the fractional derivative, Mah. Japon. 29, 383–389, 1984. [16] Srivastava, H. M., Saigo, M. and Owa, S. A class of distortion theorems involving certain operators of fractional calculus, J. Math. Anal. Appl. 131, 412–420, 1988.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İstatistik
Bölüm Matematik
Yazarlar

Contents Of Volume 34 Mathematics B. A. Frasin Bu kişi benim

B. A. Frasin Bu kişi benim

Yayımlanma Tarihi 1 Şubat 2005
Yayımlandığı Sayı Yıl 2005 Cilt: 34 Sayı: 1

Kaynak Göster

APA Frasin, C. O. V. 3. . M. B. A., & Frasin, B. A. (2005). SOME APPLICATIONS OF FRACTIONAL CALCULUS OPERATORS TO THE ANALYTIC PART OF HARMONIC UNIVALENT FUNCTIONS. Hacettepe Journal of Mathematics and Statistics, 34(1), 1-7.
AMA Frasin COV3MBA, Frasin BA. SOME APPLICATIONS OF FRACTIONAL CALCULUS OPERATORS TO THE ANALYTIC PART OF HARMONIC UNIVALENT FUNCTIONS. Hacettepe Journal of Mathematics and Statistics. Şubat 2005;34(1):1-7.
Chicago Frasin, Contents Of Volume 34 Mathematics B. A., ve B. A. Frasin. “SOME APPLICATIONS OF FRACTIONAL CALCULUS OPERATORS TO THE ANALYTIC PART OF HARMONIC UNIVALENT FUNCTIONS”. Hacettepe Journal of Mathematics and Statistics 34, sy. 1 (Şubat 2005): 1-7.
EndNote Frasin COV3MBA, Frasin BA (01 Şubat 2005) SOME APPLICATIONS OF FRACTIONAL CALCULUS OPERATORS TO THE ANALYTIC PART OF HARMONIC UNIVALENT FUNCTIONS. Hacettepe Journal of Mathematics and Statistics 34 1 1–7.
IEEE C. O. V. 3. . M. B. A. Frasin ve B. A. Frasin, “SOME APPLICATIONS OF FRACTIONAL CALCULUS OPERATORS TO THE ANALYTIC PART OF HARMONIC UNIVALENT FUNCTIONS”, Hacettepe Journal of Mathematics and Statistics, c. 34, sy. 1, ss. 1–7, 2005.
ISNAD Frasin, Contents Of Volume 34 Mathematics B. A. - Frasin, B. A. “SOME APPLICATIONS OF FRACTIONAL CALCULUS OPERATORS TO THE ANALYTIC PART OF HARMONIC UNIVALENT FUNCTIONS”. Hacettepe Journal of Mathematics and Statistics 34/1 (Şubat 2005), 1-7.
JAMA Frasin COV3MBA, Frasin BA. SOME APPLICATIONS OF FRACTIONAL CALCULUS OPERATORS TO THE ANALYTIC PART OF HARMONIC UNIVALENT FUNCTIONS. Hacettepe Journal of Mathematics and Statistics. 2005;34:1–7.
MLA Frasin, Contents Of Volume 34 Mathematics B. A. ve B. A. Frasin. “SOME APPLICATIONS OF FRACTIONAL CALCULUS OPERATORS TO THE ANALYTIC PART OF HARMONIC UNIVALENT FUNCTIONS”. Hacettepe Journal of Mathematics and Statistics, c. 34, sy. 1, 2005, ss. 1-7.
Vancouver Frasin COV3MBA, Frasin BA. SOME APPLICATIONS OF FRACTIONAL CALCULUS OPERATORS TO THE ANALYTIC PART OF HARMONIC UNIVALENT FUNCTIONS. Hacettepe Journal of Mathematics and Statistics. 2005;34(1):1-7.