Research Article
BibTex RIS Cite

Shrinkage estimators of shape parameter of contaminated Pareto model with insurance application

Year 2023, Volume: 52 Issue: 4, 1082 - 1095, 15.08.2023

Abstract

In this paper, a Pareto distribution in the presence of outliers is proposed as a claim size distribution. The shrinkage estimators of the shape parameter $\alpha$ are derived. Also, estimators of Premium are considered and compared by using simulation study. Finally, an actual example is proposed for obtaining different estimators of the Premium.

References

  • [1] V. Barnett and T. Lewis, Outliers in Statistical Data, 3rd ed., Wiley, New York, 1994.
  • [2] G. Benktander, A note on the most “dangerous” and skewest class of distribution, Astin Bull. 2, 87–390, 1963.
  • [3] S.K. Bhattacharya and V.K. Srivastava, A preliminary test procedure in life testing, J. Amer. Statist. Assoc. 69 (347), 726-729, 1974.
  • [4] U.J. Dixit, Characterization of the gamma distribution in the presence of k outliers, Bull. Bombay Mathematical Colloquium 4, 54–59, 1987.
  • [5] U.J. Dixit, Estimation of parameters of the gamma distribution in the presence of outliers, Comm. Statist. Theory Methods 18 (8), 3071–3085, 1989.
  • [6] U.J. Dixit and M. Jabbari Nooghabi, Efficient estimation in the Pareto distribution, Stat. Methodol. 7 (6), 687–691, 2010.
  • [7] U.J. Dixit and M. Jabbari Nooghabi, Efficient estimation in the Pareto distribution with the presence of outliers, Stat. Methodol. 8 (4), 340–355, 2011.
  • [8] U.J. Dixit and F.P. Nasiri, Estimation of parameters of the exponential distribution in the presence of outliers generated from uniform distribution, Metron 49 (3-4), 187–198, 2001.
  • [9] M. Ebegil and S. Ozdemir, Two different shrinkage estimator classes for the shape parameter of classical Pareto distribution, Hacet. J. Math. Stat. 45 (4), 1231–1244, 2016.
  • [10] F.E. Grubbs, Procedures for detecting outlying observations in samples, Technometrics 11 (1), 1–21, 1969.
  • [11] D.M. Hawkins, Identification of Outliers, Chapman and Hall, London, 1980.
  • [12] S. Heilpern, A rank-dependent generalization of zero utility principle, Insur.: Math. Econ. 33 (1), 67–73, 2003.
  • [13] M. Jabbari Nooghabi, On detecting outliers in the Pareto distribution, J. Stat. Comput. Simul. 89 (8), 1466–1481, 2019.
  • [14] M. Jabbari Nooghabi, Comparing estimation of the parameters of distribution of the root density of plants in the presence of outliers, Environmetrics 32 (5), e2676, 1-12, 2021.
  • [15] M. Jabbari Nooghabi and E. Khaleghpanah Nooghabi, On entropy of a Pareto distribution in the presence of outliers, Comm. Statist. Theory Methods 45 (17), 5234– 5250, 2016.
  • [16] M. Jabbari Nooghabi and M. Naderi, Stressstrength reliability inference for the Pareto distribution with outliers, J. Comput. Appl. Math. 404, 113911, 1-17, 2022.
  • [17] R.G. Miller, Simultaneous Statistical Inference, 2nd ed., Springer Verlag, New York, 1981.
  • [18] K. Okhli and M. Jabbari Nooghabi, On the contaminated exponential distribution: A theoretical Bayesian approach for modeling positive-valued insurance claim data with outliers, Appl. Math. Comput. 392, 125712, 1-11, 2021.
  • [19] V. Pareto, Cours DEconomie Politique, Vol. 2, Book 3, Lausanne, 1897.
  • [20] R.E. Quandt, Old and new methods of estimation and the Pareto distribution, Metrika 10, 55–82, 1966.
  • [21] M. Rytgaard, Estimation in Pareto distribution, Nordisk Reinsurance company, Gronniugen 25, Dk-1270 Compenhagen. K, Denmark, 1990.
  • [22] A. Tsanakas and E. Desli, Risk measures and theories of choice, Br. Actuar. J. 9 (4), 959–991, 2003.
  • [23] V. Young, Premium Principles In Encyclopedia of Actuarial Science, Wiley, New York, 2004.
Year 2023, Volume: 52 Issue: 4, 1082 - 1095, 15.08.2023

Abstract

References

  • [1] V. Barnett and T. Lewis, Outliers in Statistical Data, 3rd ed., Wiley, New York, 1994.
  • [2] G. Benktander, A note on the most “dangerous” and skewest class of distribution, Astin Bull. 2, 87–390, 1963.
  • [3] S.K. Bhattacharya and V.K. Srivastava, A preliminary test procedure in life testing, J. Amer. Statist. Assoc. 69 (347), 726-729, 1974.
  • [4] U.J. Dixit, Characterization of the gamma distribution in the presence of k outliers, Bull. Bombay Mathematical Colloquium 4, 54–59, 1987.
  • [5] U.J. Dixit, Estimation of parameters of the gamma distribution in the presence of outliers, Comm. Statist. Theory Methods 18 (8), 3071–3085, 1989.
  • [6] U.J. Dixit and M. Jabbari Nooghabi, Efficient estimation in the Pareto distribution, Stat. Methodol. 7 (6), 687–691, 2010.
  • [7] U.J. Dixit and M. Jabbari Nooghabi, Efficient estimation in the Pareto distribution with the presence of outliers, Stat. Methodol. 8 (4), 340–355, 2011.
  • [8] U.J. Dixit and F.P. Nasiri, Estimation of parameters of the exponential distribution in the presence of outliers generated from uniform distribution, Metron 49 (3-4), 187–198, 2001.
  • [9] M. Ebegil and S. Ozdemir, Two different shrinkage estimator classes for the shape parameter of classical Pareto distribution, Hacet. J. Math. Stat. 45 (4), 1231–1244, 2016.
  • [10] F.E. Grubbs, Procedures for detecting outlying observations in samples, Technometrics 11 (1), 1–21, 1969.
  • [11] D.M. Hawkins, Identification of Outliers, Chapman and Hall, London, 1980.
  • [12] S. Heilpern, A rank-dependent generalization of zero utility principle, Insur.: Math. Econ. 33 (1), 67–73, 2003.
  • [13] M. Jabbari Nooghabi, On detecting outliers in the Pareto distribution, J. Stat. Comput. Simul. 89 (8), 1466–1481, 2019.
  • [14] M. Jabbari Nooghabi, Comparing estimation of the parameters of distribution of the root density of plants in the presence of outliers, Environmetrics 32 (5), e2676, 1-12, 2021.
  • [15] M. Jabbari Nooghabi and E. Khaleghpanah Nooghabi, On entropy of a Pareto distribution in the presence of outliers, Comm. Statist. Theory Methods 45 (17), 5234– 5250, 2016.
  • [16] M. Jabbari Nooghabi and M. Naderi, Stressstrength reliability inference for the Pareto distribution with outliers, J. Comput. Appl. Math. 404, 113911, 1-17, 2022.
  • [17] R.G. Miller, Simultaneous Statistical Inference, 2nd ed., Springer Verlag, New York, 1981.
  • [18] K. Okhli and M. Jabbari Nooghabi, On the contaminated exponential distribution: A theoretical Bayesian approach for modeling positive-valued insurance claim data with outliers, Appl. Math. Comput. 392, 125712, 1-11, 2021.
  • [19] V. Pareto, Cours DEconomie Politique, Vol. 2, Book 3, Lausanne, 1897.
  • [20] R.E. Quandt, Old and new methods of estimation and the Pareto distribution, Metrika 10, 55–82, 1966.
  • [21] M. Rytgaard, Estimation in Pareto distribution, Nordisk Reinsurance company, Gronniugen 25, Dk-1270 Compenhagen. K, Denmark, 1990.
  • [22] A. Tsanakas and E. Desli, Risk measures and theories of choice, Br. Actuar. J. 9 (4), 959–991, 2003.
  • [23] V. Young, Premium Principles In Encyclopedia of Actuarial Science, Wiley, New York, 2004.
There are 23 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Statistics
Authors

Rahele Mollaie This is me 0000-0003-1334-3662

Mehdi Jabbari Nooghabi 0000-0002-5636-2209

Publication Date August 15, 2023
Published in Issue Year 2023 Volume: 52 Issue: 4

Cite

APA Mollaie, R., & Jabbari Nooghabi, M. (2023). Shrinkage estimators of shape parameter of contaminated Pareto model with insurance application. Hacettepe Journal of Mathematics and Statistics, 52(4), 1082-1095.
AMA Mollaie R, Jabbari Nooghabi M. Shrinkage estimators of shape parameter of contaminated Pareto model with insurance application. Hacettepe Journal of Mathematics and Statistics. August 2023;52(4):1082-1095.
Chicago Mollaie, Rahele, and Mehdi Jabbari Nooghabi. “Shrinkage Estimators of Shape Parameter of Contaminated Pareto Model With Insurance Application”. Hacettepe Journal of Mathematics and Statistics 52, no. 4 (August 2023): 1082-95.
EndNote Mollaie R, Jabbari Nooghabi M (August 1, 2023) Shrinkage estimators of shape parameter of contaminated Pareto model with insurance application. Hacettepe Journal of Mathematics and Statistics 52 4 1082–1095.
IEEE R. Mollaie and M. Jabbari Nooghabi, “Shrinkage estimators of shape parameter of contaminated Pareto model with insurance application”, Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 4, pp. 1082–1095, 2023.
ISNAD Mollaie, Rahele - Jabbari Nooghabi, Mehdi. “Shrinkage Estimators of Shape Parameter of Contaminated Pareto Model With Insurance Application”. Hacettepe Journal of Mathematics and Statistics 52/4 (August 2023), 1082-1095.
JAMA Mollaie R, Jabbari Nooghabi M. Shrinkage estimators of shape parameter of contaminated Pareto model with insurance application. Hacettepe Journal of Mathematics and Statistics. 2023;52:1082–1095.
MLA Mollaie, Rahele and Mehdi Jabbari Nooghabi. “Shrinkage Estimators of Shape Parameter of Contaminated Pareto Model With Insurance Application”. Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 4, 2023, pp. 1082-95.
Vancouver Mollaie R, Jabbari Nooghabi M. Shrinkage estimators of shape parameter of contaminated Pareto model with insurance application. Hacettepe Journal of Mathematics and Statistics. 2023;52(4):1082-95.