In this paper, a Pareto distribution in the presence of outliers is proposed as a claim size distribution. The shrinkage estimators of the shape parameter $\alpha$ are derived. Also, estimators of Premium are considered and compared by using simulation study. Finally, an actual example is proposed for obtaining different estimators of the Premium.
[1] V. Barnett and T. Lewis, Outliers in Statistical Data, 3rd ed., Wiley, New York, 1994.
[2] G. Benktander, A note on the most “dangerous” and skewest class of distribution,
Astin Bull. 2, 87–390, 1963.
[3] S.K. Bhattacharya and V.K. Srivastava, A preliminary test procedure in life testing,
J. Amer. Statist. Assoc. 69 (347), 726-729, 1974.
[4] U.J. Dixit, Characterization of the gamma distribution in the presence of k outliers,
Bull. Bombay Mathematical Colloquium 4, 54–59, 1987.
[5] U.J. Dixit, Estimation of parameters of the gamma distribution in the presence of
outliers, Comm. Statist. Theory Methods 18 (8), 3071–3085, 1989.
[6] U.J. Dixit and M. Jabbari Nooghabi, Efficient estimation in the Pareto distribution,
Stat. Methodol. 7 (6), 687–691, 2010.
[7] U.J. Dixit and M. Jabbari Nooghabi, Efficient estimation in the Pareto distribution
with the presence of outliers, Stat. Methodol. 8 (4), 340–355, 2011.
[8] U.J. Dixit and F.P. Nasiri, Estimation of parameters of the exponential distribution
in the presence of outliers generated from uniform distribution, Metron 49 (3-4),
187–198, 2001.
[9] M. Ebegil and S. Ozdemir, Two different shrinkage estimator classes for the shape
parameter of classical Pareto distribution, Hacet. J. Math. Stat. 45 (4), 1231–1244,
2016.
[10] F.E. Grubbs, Procedures for detecting outlying observations in samples, Technometrics
11 (1), 1–21, 1969.
[11] D.M. Hawkins, Identification of Outliers, Chapman and Hall, London, 1980.
[12] S. Heilpern, A rank-dependent generalization of zero utility principle, Insur.: Math.
Econ. 33 (1), 67–73, 2003.
[13] M. Jabbari Nooghabi, On detecting outliers in the Pareto distribution, J. Stat. Comput.
Simul. 89 (8), 1466–1481, 2019.
[14] M. Jabbari Nooghabi, Comparing estimation of the parameters of distribution of the
root density of plants in the presence of outliers, Environmetrics 32 (5), e2676, 1-12,
2021.
[15] M. Jabbari Nooghabi and E. Khaleghpanah Nooghabi, On entropy of a Pareto distribution
in the presence of outliers, Comm. Statist. Theory Methods 45 (17), 5234–
5250, 2016.
[16] M. Jabbari Nooghabi and M. Naderi, Stressstrength reliability inference for the Pareto
distribution with outliers, J. Comput. Appl. Math. 404, 113911, 1-17, 2022.
[17] R.G. Miller, Simultaneous Statistical Inference, 2nd ed., Springer Verlag, New York,
1981.
[18] K. Okhli and M. Jabbari Nooghabi, On the contaminated exponential distribution: A
theoretical Bayesian approach for modeling positive-valued insurance claim data with
outliers, Appl. Math. Comput. 392, 125712, 1-11, 2021.
[19] V. Pareto, Cours DEconomie Politique, Vol. 2, Book 3, Lausanne, 1897.
[20] R.E. Quandt, Old and new methods of estimation and the Pareto distribution, Metrika
10, 55–82, 1966.
[21] M. Rytgaard, Estimation in Pareto distribution, Nordisk Reinsurance company, Gronniugen
25, Dk-1270 Compenhagen. K, Denmark, 1990.
[22] A. Tsanakas and E. Desli, Risk measures and theories of choice, Br. Actuar. J. 9 (4),
959–991, 2003.
[23] V. Young, Premium Principles In Encyclopedia of Actuarial Science, Wiley, New
York, 2004.
Year 2023,
Volume: 52 Issue: 4, 1082 - 1095, 15.08.2023
[1] V. Barnett and T. Lewis, Outliers in Statistical Data, 3rd ed., Wiley, New York, 1994.
[2] G. Benktander, A note on the most “dangerous” and skewest class of distribution,
Astin Bull. 2, 87–390, 1963.
[3] S.K. Bhattacharya and V.K. Srivastava, A preliminary test procedure in life testing,
J. Amer. Statist. Assoc. 69 (347), 726-729, 1974.
[4] U.J. Dixit, Characterization of the gamma distribution in the presence of k outliers,
Bull. Bombay Mathematical Colloquium 4, 54–59, 1987.
[5] U.J. Dixit, Estimation of parameters of the gamma distribution in the presence of
outliers, Comm. Statist. Theory Methods 18 (8), 3071–3085, 1989.
[6] U.J. Dixit and M. Jabbari Nooghabi, Efficient estimation in the Pareto distribution,
Stat. Methodol. 7 (6), 687–691, 2010.
[7] U.J. Dixit and M. Jabbari Nooghabi, Efficient estimation in the Pareto distribution
with the presence of outliers, Stat. Methodol. 8 (4), 340–355, 2011.
[8] U.J. Dixit and F.P. Nasiri, Estimation of parameters of the exponential distribution
in the presence of outliers generated from uniform distribution, Metron 49 (3-4),
187–198, 2001.
[9] M. Ebegil and S. Ozdemir, Two different shrinkage estimator classes for the shape
parameter of classical Pareto distribution, Hacet. J. Math. Stat. 45 (4), 1231–1244,
2016.
[10] F.E. Grubbs, Procedures for detecting outlying observations in samples, Technometrics
11 (1), 1–21, 1969.
[11] D.M. Hawkins, Identification of Outliers, Chapman and Hall, London, 1980.
[12] S. Heilpern, A rank-dependent generalization of zero utility principle, Insur.: Math.
Econ. 33 (1), 67–73, 2003.
[13] M. Jabbari Nooghabi, On detecting outliers in the Pareto distribution, J. Stat. Comput.
Simul. 89 (8), 1466–1481, 2019.
[14] M. Jabbari Nooghabi, Comparing estimation of the parameters of distribution of the
root density of plants in the presence of outliers, Environmetrics 32 (5), e2676, 1-12,
2021.
[15] M. Jabbari Nooghabi and E. Khaleghpanah Nooghabi, On entropy of a Pareto distribution
in the presence of outliers, Comm. Statist. Theory Methods 45 (17), 5234–
5250, 2016.
[16] M. Jabbari Nooghabi and M. Naderi, Stressstrength reliability inference for the Pareto
distribution with outliers, J. Comput. Appl. Math. 404, 113911, 1-17, 2022.
[17] R.G. Miller, Simultaneous Statistical Inference, 2nd ed., Springer Verlag, New York,
1981.
[18] K. Okhli and M. Jabbari Nooghabi, On the contaminated exponential distribution: A
theoretical Bayesian approach for modeling positive-valued insurance claim data with
outliers, Appl. Math. Comput. 392, 125712, 1-11, 2021.
[19] V. Pareto, Cours DEconomie Politique, Vol. 2, Book 3, Lausanne, 1897.
[20] R.E. Quandt, Old and new methods of estimation and the Pareto distribution, Metrika
10, 55–82, 1966.
[21] M. Rytgaard, Estimation in Pareto distribution, Nordisk Reinsurance company, Gronniugen
25, Dk-1270 Compenhagen. K, Denmark, 1990.
[22] A. Tsanakas and E. Desli, Risk measures and theories of choice, Br. Actuar. J. 9 (4),
959–991, 2003.
[23] V. Young, Premium Principles In Encyclopedia of Actuarial Science, Wiley, New
York, 2004.
Mollaie, R., & Jabbari Nooghabi, M. (2023). Shrinkage estimators of shape parameter of contaminated Pareto model with insurance application. Hacettepe Journal of Mathematics and Statistics, 52(4), 1082-1095.
AMA
Mollaie R, Jabbari Nooghabi M. Shrinkage estimators of shape parameter of contaminated Pareto model with insurance application. Hacettepe Journal of Mathematics and Statistics. August 2023;52(4):1082-1095.
Chicago
Mollaie, Rahele, and Mehdi Jabbari Nooghabi. “Shrinkage Estimators of Shape Parameter of Contaminated Pareto Model With Insurance Application”. Hacettepe Journal of Mathematics and Statistics 52, no. 4 (August 2023): 1082-95.
EndNote
Mollaie R, Jabbari Nooghabi M (August 1, 2023) Shrinkage estimators of shape parameter of contaminated Pareto model with insurance application. Hacettepe Journal of Mathematics and Statistics 52 4 1082–1095.
IEEE
R. Mollaie and M. Jabbari Nooghabi, “Shrinkage estimators of shape parameter of contaminated Pareto model with insurance application”, Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 4, pp. 1082–1095, 2023.
ISNAD
Mollaie, Rahele - Jabbari Nooghabi, Mehdi. “Shrinkage Estimators of Shape Parameter of Contaminated Pareto Model With Insurance Application”. Hacettepe Journal of Mathematics and Statistics 52/4 (August 2023), 1082-1095.
JAMA
Mollaie R, Jabbari Nooghabi M. Shrinkage estimators of shape parameter of contaminated Pareto model with insurance application. Hacettepe Journal of Mathematics and Statistics. 2023;52:1082–1095.
MLA
Mollaie, Rahele and Mehdi Jabbari Nooghabi. “Shrinkage Estimators of Shape Parameter of Contaminated Pareto Model With Insurance Application”. Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 4, 2023, pp. 1082-95.
Vancouver
Mollaie R, Jabbari Nooghabi M. Shrinkage estimators of shape parameter of contaminated Pareto model with insurance application. Hacettepe Journal of Mathematics and Statistics. 2023;52(4):1082-95.