Shrinkage estimators of shape parameter of contaminated Pareto model with insurance application
Year 2023,
Volume: 52 Issue: 4, 1082 - 1095, 15.08.2023
Rahele Mollaie
Mehdi Jabbari Nooghabi
Abstract
In this paper, a Pareto distribution in the presence of outliers is proposed as a claim size distribution. The shrinkage estimators of the shape parameter $\alpha$ are derived. Also, estimators of Premium are considered and compared by using simulation study. Finally, an actual example is proposed for obtaining different estimators of the Premium.
References
- [1] V. Barnett and T. Lewis, Outliers in Statistical Data, 3rd ed., Wiley, New York, 1994.
- [2] G. Benktander, A note on the most “dangerous” and skewest class of distribution,
Astin Bull. 2, 87–390, 1963.
- [3] S.K. Bhattacharya and V.K. Srivastava, A preliminary test procedure in life testing,
J. Amer. Statist. Assoc. 69 (347), 726-729, 1974.
- [4] U.J. Dixit, Characterization of the gamma distribution in the presence of k outliers,
Bull. Bombay Mathematical Colloquium 4, 54–59, 1987.
- [5] U.J. Dixit, Estimation of parameters of the gamma distribution in the presence of
outliers, Comm. Statist. Theory Methods 18 (8), 3071–3085, 1989.
- [6] U.J. Dixit and M. Jabbari Nooghabi, Efficient estimation in the Pareto distribution,
Stat. Methodol. 7 (6), 687–691, 2010.
- [7] U.J. Dixit and M. Jabbari Nooghabi, Efficient estimation in the Pareto distribution
with the presence of outliers, Stat. Methodol. 8 (4), 340–355, 2011.
- [8] U.J. Dixit and F.P. Nasiri, Estimation of parameters of the exponential distribution
in the presence of outliers generated from uniform distribution, Metron 49 (3-4),
187–198, 2001.
- [9] M. Ebegil and S. Ozdemir, Two different shrinkage estimator classes for the shape
parameter of classical Pareto distribution, Hacet. J. Math. Stat. 45 (4), 1231–1244,
2016.
- [10] F.E. Grubbs, Procedures for detecting outlying observations in samples, Technometrics
11 (1), 1–21, 1969.
- [11] D.M. Hawkins, Identification of Outliers, Chapman and Hall, London, 1980.
- [12] S. Heilpern, A rank-dependent generalization of zero utility principle, Insur.: Math.
Econ. 33 (1), 67–73, 2003.
- [13] M. Jabbari Nooghabi, On detecting outliers in the Pareto distribution, J. Stat. Comput.
Simul. 89 (8), 1466–1481, 2019.
- [14] M. Jabbari Nooghabi, Comparing estimation of the parameters of distribution of the
root density of plants in the presence of outliers, Environmetrics 32 (5), e2676, 1-12,
2021.
- [15] M. Jabbari Nooghabi and E. Khaleghpanah Nooghabi, On entropy of a Pareto distribution
in the presence of outliers, Comm. Statist. Theory Methods 45 (17), 5234–
5250, 2016.
- [16] M. Jabbari Nooghabi and M. Naderi, Stressstrength reliability inference for the Pareto
distribution with outliers, J. Comput. Appl. Math. 404, 113911, 1-17, 2022.
- [17] R.G. Miller, Simultaneous Statistical Inference, 2nd ed., Springer Verlag, New York,
1981.
- [18] K. Okhli and M. Jabbari Nooghabi, On the contaminated exponential distribution: A
theoretical Bayesian approach for modeling positive-valued insurance claim data with
outliers, Appl. Math. Comput. 392, 125712, 1-11, 2021.
- [19] V. Pareto, Cours DEconomie Politique, Vol. 2, Book 3, Lausanne, 1897.
- [20] R.E. Quandt, Old and new methods of estimation and the Pareto distribution, Metrika
10, 55–82, 1966.
- [21] M. Rytgaard, Estimation in Pareto distribution, Nordisk Reinsurance company, Gronniugen
25, Dk-1270 Compenhagen. K, Denmark, 1990.
- [22] A. Tsanakas and E. Desli, Risk measures and theories of choice, Br. Actuar. J. 9 (4),
959–991, 2003.
- [23] V. Young, Premium Principles In Encyclopedia of Actuarial Science, Wiley, New
York, 2004.
Year 2023,
Volume: 52 Issue: 4, 1082 - 1095, 15.08.2023
Rahele Mollaie
Mehdi Jabbari Nooghabi
References
- [1] V. Barnett and T. Lewis, Outliers in Statistical Data, 3rd ed., Wiley, New York, 1994.
- [2] G. Benktander, A note on the most “dangerous” and skewest class of distribution,
Astin Bull. 2, 87–390, 1963.
- [3] S.K. Bhattacharya and V.K. Srivastava, A preliminary test procedure in life testing,
J. Amer. Statist. Assoc. 69 (347), 726-729, 1974.
- [4] U.J. Dixit, Characterization of the gamma distribution in the presence of k outliers,
Bull. Bombay Mathematical Colloquium 4, 54–59, 1987.
- [5] U.J. Dixit, Estimation of parameters of the gamma distribution in the presence of
outliers, Comm. Statist. Theory Methods 18 (8), 3071–3085, 1989.
- [6] U.J. Dixit and M. Jabbari Nooghabi, Efficient estimation in the Pareto distribution,
Stat. Methodol. 7 (6), 687–691, 2010.
- [7] U.J. Dixit and M. Jabbari Nooghabi, Efficient estimation in the Pareto distribution
with the presence of outliers, Stat. Methodol. 8 (4), 340–355, 2011.
- [8] U.J. Dixit and F.P. Nasiri, Estimation of parameters of the exponential distribution
in the presence of outliers generated from uniform distribution, Metron 49 (3-4),
187–198, 2001.
- [9] M. Ebegil and S. Ozdemir, Two different shrinkage estimator classes for the shape
parameter of classical Pareto distribution, Hacet. J. Math. Stat. 45 (4), 1231–1244,
2016.
- [10] F.E. Grubbs, Procedures for detecting outlying observations in samples, Technometrics
11 (1), 1–21, 1969.
- [11] D.M. Hawkins, Identification of Outliers, Chapman and Hall, London, 1980.
- [12] S. Heilpern, A rank-dependent generalization of zero utility principle, Insur.: Math.
Econ. 33 (1), 67–73, 2003.
- [13] M. Jabbari Nooghabi, On detecting outliers in the Pareto distribution, J. Stat. Comput.
Simul. 89 (8), 1466–1481, 2019.
- [14] M. Jabbari Nooghabi, Comparing estimation of the parameters of distribution of the
root density of plants in the presence of outliers, Environmetrics 32 (5), e2676, 1-12,
2021.
- [15] M. Jabbari Nooghabi and E. Khaleghpanah Nooghabi, On entropy of a Pareto distribution
in the presence of outliers, Comm. Statist. Theory Methods 45 (17), 5234–
5250, 2016.
- [16] M. Jabbari Nooghabi and M. Naderi, Stressstrength reliability inference for the Pareto
distribution with outliers, J. Comput. Appl. Math. 404, 113911, 1-17, 2022.
- [17] R.G. Miller, Simultaneous Statistical Inference, 2nd ed., Springer Verlag, New York,
1981.
- [18] K. Okhli and M. Jabbari Nooghabi, On the contaminated exponential distribution: A
theoretical Bayesian approach for modeling positive-valued insurance claim data with
outliers, Appl. Math. Comput. 392, 125712, 1-11, 2021.
- [19] V. Pareto, Cours DEconomie Politique, Vol. 2, Book 3, Lausanne, 1897.
- [20] R.E. Quandt, Old and new methods of estimation and the Pareto distribution, Metrika
10, 55–82, 1966.
- [21] M. Rytgaard, Estimation in Pareto distribution, Nordisk Reinsurance company, Gronniugen
25, Dk-1270 Compenhagen. K, Denmark, 1990.
- [22] A. Tsanakas and E. Desli, Risk measures and theories of choice, Br. Actuar. J. 9 (4),
959–991, 2003.
- [23] V. Young, Premium Principles In Encyclopedia of Actuarial Science, Wiley, New
York, 2004.