On the computation of some code sets of the added Sierpinski triangle
Year 2024,
Volume: 53 Issue: 1, 130 - 144, 29.02.2024
Aslıhan İklim Şen
,
Mustafa Saltan
Abstract
In recent years, the intrinsic metrics have been formulated on the classical fractals. In particular, Sierpinski-like triangles such as equilateral, isosceles, scalene, added and mod$-3$ Sierpinski triangle have been considered in many different studies. The intrinsic metrics can be defined in different ways. One of the methods applied to obtain the intrinsic metric formulas is to use the code representations of the points on these self-similar sets. To define the intrinsic metrics via the code representations of the points on fractals makes also possible to investigate different geometrical, topological properties and geodesics of these sets. In this paper, we investigate some circles and closed sets of the added Sierpinski triangle and express them as the code sets by using its intrinsic metric.
Supporting Institution
TÜBİTAK
Thanks
The authors would like to thank TÜBİTAK for their support of the project.
References
- [1] N. Aslan, M. Saltan and B. Demir, The intrinsic metric formula and a chaotic dynamical
system on the code set of the Sierpinski tetrahedron, Chaos Soliton Fract.
123, 422-428, 2019.
- [2] N. Aslan, M. Saltan and B. Demir, On Topological conjugacy of some chaotic dynamical
systems on the Sierpinski gasket, Filomat 35 (7), 2317–2391, 2021.
- [3] N. Aslan and M. Saltan, On the construction of chaotic dynamical systems on the box
fractal, Researches in Mathematics 29 (2) 3–14, 2021.
- [4] N. Aslan, S. Şeker and M. Saltan, The investigation of chaos conditions of some
dynamical systems on the Sierpinski propeller, Chaos Soliton Fract. 159, 112123,
2022.
- [5] N. Aslan and İ. Aslan, Approximation to the classical fractals by using non-affine
contraction mappings, Port. Math. 79, 45–60, 2022.
- [6] M. Barnsley, Fractals Everywhere, Academic Press, San Diego, CA, USA, 1988.
- [7] L.L. Cristea and B. Steinsky, Distances in Sierpinski graphs and on the Sierpinski
gasket, Aequationes Math. 85, 201-219, 2013.
- [8] M. Denker and H. Sato, Sierpinski gasket as a Martin boundary II (the intrinsic
metric), Publ. Res. Inst. Math. Sci. 35, 769-794, 1999.
- [9] G. Edgar, Measure, Topology, and Fractal Geometry, Springer, New York, NY, USA,
2008.
- [10] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, Wiley,
Hoboken, NJ, USA, 2004.
- [11] P. Grabner and R.F. Tichy, Equidistribution and Brownian motion on the Sierpinski
gasket, Monatshefte für Mathematik 125, 147-164, 1998.
- [12] A.M. Hinz and A. Schief, The average distance on the Sierpinski gasket, Probab.
Theory Relat. Fields 87, 129–138, 1990.
- [13] D. Romik, Shortest paths in the Tower of Hanoi graph and finite automata, SIAM J.
Discret. Math. 20, 610–622, 2006.
- [14] M. Saltan, Y. Özdemir and B. Demir, An explicit formula of the intrinsic metric on
the Sierpinski gasket via code representation, Turk. J. Math. 42, 716–725, 2018.
- [15] M. Saltan, Y. Özdemir and B. Demir, Geodesics of the Sierpinski gasket, Fractals 26,
1850024, 2018.
- [16] M. Saltan, Some interesting code sets of the Sierpinski triangle equipped with the
intrinsic metric, IJAMAS 57, 152-160, 2018.
- [17] M. Saltan, Intrinsic metrics on Sierpinski-like triangles and their geometric properties,
Symmetry 10, 204, DOI:10.3390/sym10060204, 2018.
- [18] M. Saltan, N. Aslan and B. Demir, A discrete chaotic dynamical system on the Sierpinski
gasket, Turk. J. Math. 43, 361-372, 2019.
- [19] R.S. Strichartz, Isoperimetric estimates on Sierpinski gasket type fractals, Trans. Am.
Math. Soc. 351, 1705-1752, 1999.
- [20] A.İ. Şen and M. Saltan, The formulization of the intrinsic metric on the added Sierpinski
triangle by using the code representations, Turk. J. Math. 42, 716-725, 2018.
Year 2024,
Volume: 53 Issue: 1, 130 - 144, 29.02.2024
Aslıhan İklim Şen
,
Mustafa Saltan
References
- [1] N. Aslan, M. Saltan and B. Demir, The intrinsic metric formula and a chaotic dynamical
system on the code set of the Sierpinski tetrahedron, Chaos Soliton Fract.
123, 422-428, 2019.
- [2] N. Aslan, M. Saltan and B. Demir, On Topological conjugacy of some chaotic dynamical
systems on the Sierpinski gasket, Filomat 35 (7), 2317–2391, 2021.
- [3] N. Aslan and M. Saltan, On the construction of chaotic dynamical systems on the box
fractal, Researches in Mathematics 29 (2) 3–14, 2021.
- [4] N. Aslan, S. Şeker and M. Saltan, The investigation of chaos conditions of some
dynamical systems on the Sierpinski propeller, Chaos Soliton Fract. 159, 112123,
2022.
- [5] N. Aslan and İ. Aslan, Approximation to the classical fractals by using non-affine
contraction mappings, Port. Math. 79, 45–60, 2022.
- [6] M. Barnsley, Fractals Everywhere, Academic Press, San Diego, CA, USA, 1988.
- [7] L.L. Cristea and B. Steinsky, Distances in Sierpinski graphs and on the Sierpinski
gasket, Aequationes Math. 85, 201-219, 2013.
- [8] M. Denker and H. Sato, Sierpinski gasket as a Martin boundary II (the intrinsic
metric), Publ. Res. Inst. Math. Sci. 35, 769-794, 1999.
- [9] G. Edgar, Measure, Topology, and Fractal Geometry, Springer, New York, NY, USA,
2008.
- [10] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, Wiley,
Hoboken, NJ, USA, 2004.
- [11] P. Grabner and R.F. Tichy, Equidistribution and Brownian motion on the Sierpinski
gasket, Monatshefte für Mathematik 125, 147-164, 1998.
- [12] A.M. Hinz and A. Schief, The average distance on the Sierpinski gasket, Probab.
Theory Relat. Fields 87, 129–138, 1990.
- [13] D. Romik, Shortest paths in the Tower of Hanoi graph and finite automata, SIAM J.
Discret. Math. 20, 610–622, 2006.
- [14] M. Saltan, Y. Özdemir and B. Demir, An explicit formula of the intrinsic metric on
the Sierpinski gasket via code representation, Turk. J. Math. 42, 716–725, 2018.
- [15] M. Saltan, Y. Özdemir and B. Demir, Geodesics of the Sierpinski gasket, Fractals 26,
1850024, 2018.
- [16] M. Saltan, Some interesting code sets of the Sierpinski triangle equipped with the
intrinsic metric, IJAMAS 57, 152-160, 2018.
- [17] M. Saltan, Intrinsic metrics on Sierpinski-like triangles and their geometric properties,
Symmetry 10, 204, DOI:10.3390/sym10060204, 2018.
- [18] M. Saltan, N. Aslan and B. Demir, A discrete chaotic dynamical system on the Sierpinski
gasket, Turk. J. Math. 43, 361-372, 2019.
- [19] R.S. Strichartz, Isoperimetric estimates on Sierpinski gasket type fractals, Trans. Am.
Math. Soc. 351, 1705-1752, 1999.
- [20] A.İ. Şen and M. Saltan, The formulization of the intrinsic metric on the added Sierpinski
triangle by using the code representations, Turk. J. Math. 42, 716-725, 2018.