Research Article
BibTex RIS Cite

Graphs of schemes associated to group actions

Year 2024, Volume: 53 Issue: 1, 145 - 154, 29.02.2024
https://doi.org/10.15672/hujms.1206439

Abstract

Let $X$ be a proper algebraic scheme over an algebraically closed field. We assume that a torus $T$ acts on $X$ such that the action has isolated fixed points. The $T$-graph of $X$ can be defined using the fixed points and the one-dimensional orbits of the $T$-action. If the upper Borel subgroup of the general linear group with maximal torus $T$ acts on $X$, then we can define a second graph associated to $X$, called the $A$-graph of $X$. We prove that the $A$-graph of $X$ is connected if and only if $X$ is connected. We use this result to give proof of Hartshorne's theorem on the connectedness of the Hilbert scheme in the case of $d$ points in $\mathbb{P}^{n}$.
.

References

  • [1] E. Akyıldız and J.B. Carrell, Cohomology of projective varieties with regular $SL_{2}$- actions, Manuscr. Math. 58, 473-486, 1987.
  • [2] K. Altmann and B. Sturmfels B, The graph of monomial ideals, J. Pure Appl. Algebra 201 (1–3), 250-263, 2005.
  • [3] A. Biaynicki-Birula, Some theorems on actions of algebraic groups, Annals of MathematicsAnn. Math. 98 (3), 480-497, 1973.
  • [4] A. Biaynicki-Birula, On fixed point schemes of actions of multiplicative and additive groups, Topology, 12, 99-103, 1973.
  • [5] A. Bialynicki-Birula, J.B. Carrell and W.M. McGovern, Algebraic Quotients, Torus Actions and Cohomology., Volume 131 of Encyclopaedia of Mathematical Sciences. Berlin, Germany: Springer-Verlag, 2002.
  • [6] D. Eisenbud, Commutative Algebra with a View Towards Algebraic Geometry, New York, USA: Springer-Verlag, 1995.
  • [7] M. Goresky, R. Kottwitz and R. MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1), 25-83, 1998.
  • [8] R. Hartshorne, Connectedness of the Hilbert scheme, Institut Hautes Etudes Scientifiques Publications Mathematiques, 29, 261-309, 1966.
  • [9] M. Hering and D. Maclagan, The T-graph of a multigraded Hilbert scheme, Exp. Math. 21 (3), 280-297, 2012.
  • [10] G. Horrocks, Fixed point schemes of additive group schemes, Topology, 8, 233-242, 1969.
  • [11] B. Iversen, A fixed point formula for action of tori on algebraic varieties, Invent. Math. 16, 229-236, 1972.
  • [12] E. Özkan, Fixed point scheme of the Hilbert scheme under a 1-dimensional additive algebraic group action, PhD, Middle East Technical University, Ankara, Turkey, 2011.
  • [13] A.A. Reeves, The radius of the Hilbert scheme, J. Algebraic Geom. 4, 639-657, 1995.
Year 2024, Volume: 53 Issue: 1, 145 - 154, 29.02.2024
https://doi.org/10.15672/hujms.1206439

Abstract

References

  • [1] E. Akyıldız and J.B. Carrell, Cohomology of projective varieties with regular $SL_{2}$- actions, Manuscr. Math. 58, 473-486, 1987.
  • [2] K. Altmann and B. Sturmfels B, The graph of monomial ideals, J. Pure Appl. Algebra 201 (1–3), 250-263, 2005.
  • [3] A. Biaynicki-Birula, Some theorems on actions of algebraic groups, Annals of MathematicsAnn. Math. 98 (3), 480-497, 1973.
  • [4] A. Biaynicki-Birula, On fixed point schemes of actions of multiplicative and additive groups, Topology, 12, 99-103, 1973.
  • [5] A. Bialynicki-Birula, J.B. Carrell and W.M. McGovern, Algebraic Quotients, Torus Actions and Cohomology., Volume 131 of Encyclopaedia of Mathematical Sciences. Berlin, Germany: Springer-Verlag, 2002.
  • [6] D. Eisenbud, Commutative Algebra with a View Towards Algebraic Geometry, New York, USA: Springer-Verlag, 1995.
  • [7] M. Goresky, R. Kottwitz and R. MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1), 25-83, 1998.
  • [8] R. Hartshorne, Connectedness of the Hilbert scheme, Institut Hautes Etudes Scientifiques Publications Mathematiques, 29, 261-309, 1966.
  • [9] M. Hering and D. Maclagan, The T-graph of a multigraded Hilbert scheme, Exp. Math. 21 (3), 280-297, 2012.
  • [10] G. Horrocks, Fixed point schemes of additive group schemes, Topology, 8, 233-242, 1969.
  • [11] B. Iversen, A fixed point formula for action of tori on algebraic varieties, Invent. Math. 16, 229-236, 1972.
  • [12] E. Özkan, Fixed point scheme of the Hilbert scheme under a 1-dimensional additive algebraic group action, PhD, Middle East Technical University, Ankara, Turkey, 2011.
  • [13] A.A. Reeves, The radius of the Hilbert scheme, J. Algebraic Geom. 4, 639-657, 1995.
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Ali Özgür Kişisel 0000-0002-3082-9261

Engin Özkan 0000-0002-0175-4838

Early Pub Date January 10, 2024
Publication Date February 29, 2024
Published in Issue Year 2024 Volume: 53 Issue: 1

Cite

APA Kişisel, A. Ö., & Özkan, E. (2024). Graphs of schemes associated to group actions. Hacettepe Journal of Mathematics and Statistics, 53(1), 145-154. https://doi.org/10.15672/hujms.1206439
AMA Kişisel AÖ, Özkan E. Graphs of schemes associated to group actions. Hacettepe Journal of Mathematics and Statistics. February 2024;53(1):145-154. doi:10.15672/hujms.1206439
Chicago Kişisel, Ali Özgür, and Engin Özkan. “Graphs of Schemes Associated to Group Actions”. Hacettepe Journal of Mathematics and Statistics 53, no. 1 (February 2024): 145-54. https://doi.org/10.15672/hujms.1206439.
EndNote Kişisel AÖ, Özkan E (February 1, 2024) Graphs of schemes associated to group actions. Hacettepe Journal of Mathematics and Statistics 53 1 145–154.
IEEE A. Ö. Kişisel and E. Özkan, “Graphs of schemes associated to group actions”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 1, pp. 145–154, 2024, doi: 10.15672/hujms.1206439.
ISNAD Kişisel, Ali Özgür - Özkan, Engin. “Graphs of Schemes Associated to Group Actions”. Hacettepe Journal of Mathematics and Statistics 53/1 (February 2024), 145-154. https://doi.org/10.15672/hujms.1206439.
JAMA Kişisel AÖ, Özkan E. Graphs of schemes associated to group actions. Hacettepe Journal of Mathematics and Statistics. 2024;53:145–154.
MLA Kişisel, Ali Özgür and Engin Özkan. “Graphs of Schemes Associated to Group Actions”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 1, 2024, pp. 145-54, doi:10.15672/hujms.1206439.
Vancouver Kişisel AÖ, Özkan E. Graphs of schemes associated to group actions. Hacettepe Journal of Mathematics and Statistics. 2024;53(1):145-54.