Research Article
BibTex RIS Cite

A comparative study for the spectral properties of Toeplitz and Hankel operators

Year 2024, Volume: 53 Issue: 3, 690 - 703, 27.06.2024
https://doi.org/10.15672/hujms.1241656

Abstract

In this introductory review, we study Hankel and Toeplitz operators considering them as acting on certain spaces of analytic functions, namely Hardy spaces and compare their spectral properties such as their compactness criteria. In contrast to Toeplitz operators, the symbol of a Hankel operator is not uniquely determined by the operator. We also connect Toeplitz operators with Fredholm operators and give some of the most beautiful properties of Toeplitz operators such as the essential spectrum of Toeplitz operator with continuous symbol and the index of Toeplitz operator introducing Fredholm operators firstly.

References

  • [1] P. Ahern, E.H. Youssfi and K. Zhu, Compactness of Hankel operators on Hardy- Sobolev spaces of the polydisk, J. Operator Theory 61 (2), 301-312, 2009.
  • [2] A. Böttcher and B. Silbermann, Analysis of Toeplitz Operators, Springer-Verlag, Berlin, 1990.
  • [3] E.B. Davies, Linear Operators and Their Spectra, Cambridge University Press, 2007.
  • [4] H. Edelsbrunner, Geometry and Topology for Mesh Generation, Cambridge University Press, 2001.
  • [5] D.E. Edmunds and W.D. Evans, Spectral Theory and Differential Operators, Clarendon Press, Oxford, 1987.
  • [6] M. Engliš and G. Zhang, Hankel operators and the Dixmier trace on the Hardy space, Journal of the London Mathematical Society 94 (2), 337-356, 2016.
  • [7] R.E. Harte, W.Y. Lee and L.L. Littlejohn, On generalized Riesz points, J. Operator Theory 47, 187-196, 2002.
  • [8] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, 1962.
  • [9] J.K. Hunter and B. Nachtergaele, Applied Analysis, World Scientific, 2001.
  • [10] Y. Katznelson, An introduction to harmonic analysis, third ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2004.
  • [11] E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley and Sons, Canada, 1989.
  • [12] J.R. Partington, An Introduction to Hankel Operators, Cambridge University Press, 1988.
  • [13] V.V. Peller, Hankel Operators and Their Applications, Springer, 2003.
  • [14] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1970.
  • [15] Y. Soykan, Fonksiyonel analiz: Çözümlü alıştırmaları, Nobel Yayın Dağıtım, 2012.
  • [16] Y. Soykan, Fonksiyonel analiz, Nobel akademik yayıncılık, 2016.
Year 2024, Volume: 53 Issue: 3, 690 - 703, 27.06.2024
https://doi.org/10.15672/hujms.1241656

Abstract

References

  • [1] P. Ahern, E.H. Youssfi and K. Zhu, Compactness of Hankel operators on Hardy- Sobolev spaces of the polydisk, J. Operator Theory 61 (2), 301-312, 2009.
  • [2] A. Böttcher and B. Silbermann, Analysis of Toeplitz Operators, Springer-Verlag, Berlin, 1990.
  • [3] E.B. Davies, Linear Operators and Their Spectra, Cambridge University Press, 2007.
  • [4] H. Edelsbrunner, Geometry and Topology for Mesh Generation, Cambridge University Press, 2001.
  • [5] D.E. Edmunds and W.D. Evans, Spectral Theory and Differential Operators, Clarendon Press, Oxford, 1987.
  • [6] M. Engliš and G. Zhang, Hankel operators and the Dixmier trace on the Hardy space, Journal of the London Mathematical Society 94 (2), 337-356, 2016.
  • [7] R.E. Harte, W.Y. Lee and L.L. Littlejohn, On generalized Riesz points, J. Operator Theory 47, 187-196, 2002.
  • [8] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, 1962.
  • [9] J.K. Hunter and B. Nachtergaele, Applied Analysis, World Scientific, 2001.
  • [10] Y. Katznelson, An introduction to harmonic analysis, third ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2004.
  • [11] E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley and Sons, Canada, 1989.
  • [12] J.R. Partington, An Introduction to Hankel Operators, Cambridge University Press, 1988.
  • [13] V.V. Peller, Hankel Operators and Their Applications, Springer, 2003.
  • [14] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1970.
  • [15] Y. Soykan, Fonksiyonel analiz: Çözümlü alıştırmaları, Nobel Yayın Dağıtım, 2012.
  • [16] Y. Soykan, Fonksiyonel analiz, Nobel akademik yayıncılık, 2016.
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Ayşe Güven Sarıhan 0000-0002-0828-4429

Early Pub Date August 15, 2023
Publication Date June 27, 2024
Published in Issue Year 2024 Volume: 53 Issue: 3

Cite

APA Güven Sarıhan, A. (2024). A comparative study for the spectral properties of Toeplitz and Hankel operators. Hacettepe Journal of Mathematics and Statistics, 53(3), 690-703. https://doi.org/10.15672/hujms.1241656
AMA Güven Sarıhan A. A comparative study for the spectral properties of Toeplitz and Hankel operators. Hacettepe Journal of Mathematics and Statistics. June 2024;53(3):690-703. doi:10.15672/hujms.1241656
Chicago Güven Sarıhan, Ayşe. “A Comparative Study for the Spectral Properties of Toeplitz and Hankel Operators”. Hacettepe Journal of Mathematics and Statistics 53, no. 3 (June 2024): 690-703. https://doi.org/10.15672/hujms.1241656.
EndNote Güven Sarıhan A (June 1, 2024) A comparative study for the spectral properties of Toeplitz and Hankel operators. Hacettepe Journal of Mathematics and Statistics 53 3 690–703.
IEEE A. Güven Sarıhan, “A comparative study for the spectral properties of Toeplitz and Hankel operators”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 3, pp. 690–703, 2024, doi: 10.15672/hujms.1241656.
ISNAD Güven Sarıhan, Ayşe. “A Comparative Study for the Spectral Properties of Toeplitz and Hankel Operators”. Hacettepe Journal of Mathematics and Statistics 53/3 (June 2024), 690-703. https://doi.org/10.15672/hujms.1241656.
JAMA Güven Sarıhan A. A comparative study for the spectral properties of Toeplitz and Hankel operators. Hacettepe Journal of Mathematics and Statistics. 2024;53:690–703.
MLA Güven Sarıhan, Ayşe. “A Comparative Study for the Spectral Properties of Toeplitz and Hankel Operators”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 3, 2024, pp. 690-03, doi:10.15672/hujms.1241656.
Vancouver Güven Sarıhan A. A comparative study for the spectral properties of Toeplitz and Hankel operators. Hacettepe Journal of Mathematics and Statistics. 2024;53(3):690-703.