Research Article
BibTex RIS Cite

Composition-differentiation operators acting on certain Hilbert spaces of analytic functions

Year 2024, Volume: 53 Issue: 3, 586 - 594, 27.06.2024
https://doi.org/10.15672/hujms.1241783

Abstract

We study composition-differentiation operators acting on the Bergman and Dirichlet space of the open unit disk. We first characterize the compactness of composition-differentiation operator on weighted Bergman spaces. We shall then prove that for an analytic self-map $\varphi$ on the open unit disk $\mathbb{D}$, the induced composition-differentiation operator is bounded with dense range if and only if $\varphi$ is univalent and the polynomials are dense in the Bergman space on $\Omega:=\varphi(\mathbb{D})$.

References

  • [1] A. Babaei and A. Abkar, Weighted composition-differentiation operators on the Hardy and Bergman spaces, Bull. Iran. Math. Soc. 48, 3637–3658, 2022.
  • [2] G. Cao, L. He and K. Zhu, Polynomial approximation and composition operators, Proc. Amer. Math. Soc. 149 (9), 3715–3724, 2021.
  • [3] J.A. Cima, A theorem on composition operators, Banach spaces of analytic functions (Proc. Pelczynski Conf., Kent State Univ., Kent, Ohio, 1976). Lecture Notes in Math. 604, Springer, Berlin, pp. 21–24, 1977.
  • [4] C.C. Cowen and B.D. MacCluer, Composition operators on spaces of analytic functions, Studies in Advanced Mathematics, CRC Press, 1995.
  • [5] P. Duren, Theory of $H^p$ Spaces, Academic Press, New York, 1970.
  • [6] M. Fatehi and C.N.B. Hammond, Composition-differentiation operators on the Hardy space, Proc. Amer. Math. Soc. 148 (7), 2893–2900, 2020.
  • [7] M. Fatehi and C.N.B. Hammond, Normality and self-adjointness of weighted composition-differentiation operators, Complex Anal. Oper. Theory 15 9, 2021.
  • [8] E. Nordgren, Composition operators, Can. J. Math. 20, 442–449, 1968.
  • [9] S. Ohno, Products of composition and differentiation between Hardy spaces, Bull. Austr. Math. Soc. 73 (2), 235–243, 2006.
  • [10] W. Rudin, Real and Complex Analysis, 3rd edition, McGraw-Hill, 1986.
  • [11] Z. Saeidikia and A. Abkar, Composition operators on weighted Bergman spaces of polydisk, Bull. Iran. Math. Soc. 49 (31), 2023.
  • [12] K. Zhu, Operator Theory in Function Spaces, Marcel Dekker Inc., New York, 1990.
Year 2024, Volume: 53 Issue: 3, 586 - 594, 27.06.2024
https://doi.org/10.15672/hujms.1241783

Abstract

References

  • [1] A. Babaei and A. Abkar, Weighted composition-differentiation operators on the Hardy and Bergman spaces, Bull. Iran. Math. Soc. 48, 3637–3658, 2022.
  • [2] G. Cao, L. He and K. Zhu, Polynomial approximation and composition operators, Proc. Amer. Math. Soc. 149 (9), 3715–3724, 2021.
  • [3] J.A. Cima, A theorem on composition operators, Banach spaces of analytic functions (Proc. Pelczynski Conf., Kent State Univ., Kent, Ohio, 1976). Lecture Notes in Math. 604, Springer, Berlin, pp. 21–24, 1977.
  • [4] C.C. Cowen and B.D. MacCluer, Composition operators on spaces of analytic functions, Studies in Advanced Mathematics, CRC Press, 1995.
  • [5] P. Duren, Theory of $H^p$ Spaces, Academic Press, New York, 1970.
  • [6] M. Fatehi and C.N.B. Hammond, Composition-differentiation operators on the Hardy space, Proc. Amer. Math. Soc. 148 (7), 2893–2900, 2020.
  • [7] M. Fatehi and C.N.B. Hammond, Normality and self-adjointness of weighted composition-differentiation operators, Complex Anal. Oper. Theory 15 9, 2021.
  • [8] E. Nordgren, Composition operators, Can. J. Math. 20, 442–449, 1968.
  • [9] S. Ohno, Products of composition and differentiation between Hardy spaces, Bull. Austr. Math. Soc. 73 (2), 235–243, 2006.
  • [10] W. Rudin, Real and Complex Analysis, 3rd edition, McGraw-Hill, 1986.
  • [11] Z. Saeidikia and A. Abkar, Composition operators on weighted Bergman spaces of polydisk, Bull. Iran. Math. Soc. 49 (31), 2023.
  • [12] K. Zhu, Operator Theory in Function Spaces, Marcel Dekker Inc., New York, 1990.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Yazdan Bayat 0009-0003-2986-7572

Ali Abkar 0000-0001-5163-7608

Early Pub Date August 15, 2023
Publication Date June 27, 2024
Published in Issue Year 2024 Volume: 53 Issue: 3

Cite

APA Bayat, Y., & Abkar, A. (2024). Composition-differentiation operators acting on certain Hilbert spaces of analytic functions. Hacettepe Journal of Mathematics and Statistics, 53(3), 586-594. https://doi.org/10.15672/hujms.1241783
AMA Bayat Y, Abkar A. Composition-differentiation operators acting on certain Hilbert spaces of analytic functions. Hacettepe Journal of Mathematics and Statistics. June 2024;53(3):586-594. doi:10.15672/hujms.1241783
Chicago Bayat, Yazdan, and Ali Abkar. “Composition-Differentiation Operators Acting on Certain Hilbert Spaces of Analytic Functions”. Hacettepe Journal of Mathematics and Statistics 53, no. 3 (June 2024): 586-94. https://doi.org/10.15672/hujms.1241783.
EndNote Bayat Y, Abkar A (June 1, 2024) Composition-differentiation operators acting on certain Hilbert spaces of analytic functions. Hacettepe Journal of Mathematics and Statistics 53 3 586–594.
IEEE Y. Bayat and A. Abkar, “Composition-differentiation operators acting on certain Hilbert spaces of analytic functions”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 3, pp. 586–594, 2024, doi: 10.15672/hujms.1241783.
ISNAD Bayat, Yazdan - Abkar, Ali. “Composition-Differentiation Operators Acting on Certain Hilbert Spaces of Analytic Functions”. Hacettepe Journal of Mathematics and Statistics 53/3 (June 2024), 586-594. https://doi.org/10.15672/hujms.1241783.
JAMA Bayat Y, Abkar A. Composition-differentiation operators acting on certain Hilbert spaces of analytic functions. Hacettepe Journal of Mathematics and Statistics. 2024;53:586–594.
MLA Bayat, Yazdan and Ali Abkar. “Composition-Differentiation Operators Acting on Certain Hilbert Spaces of Analytic Functions”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 3, 2024, pp. 586-94, doi:10.15672/hujms.1241783.
Vancouver Bayat Y, Abkar A. Composition-differentiation operators acting on certain Hilbert spaces of analytic functions. Hacettepe Journal of Mathematics and Statistics. 2024;53(3):586-94.