Spectrum, homomorphisms and multipliers of Lau product of Banach algebras
Year 2024,
Volume: 53 Issue: 3, 777 - 787, 27.06.2024
Mohammad Valaei
,
Abbas Zıvarı-kazempour
Abstract
Given Banach algebras $A$, $B$ and a continuous homomorphism $\theta:B\longrightarrow A$ with $\Vert\theta\Vert \leq1$, we obtain characterization of spectrum, homomorphisms and multipliers of $A\times_{\theta}B$, which is a strongly splitting Banach algebra extension of $B$ by $A$. Also we characterize the semisimplicity of these algebras.
References
- [1] F. Abtahi, A. Ghafarpanah and A. Rejali, Biprojectivity and biflatness of Lau product
of Banach algebras defined by a Banach algebras morphism, Bull. Aust. Math. Soc.
91 (1), 134-144, 2015.
- [2] S. J. Bhatt and P. A. Dabhi, Arens regularity and amenability of Lau product of
Banach algebras defined by a Banach algebra morphism, Bull. Aust. Math. Soc. 87,
195-206, 2013.
- [3] P. A. Dabhi, Multipliers of perturbed Cartesian products with application to BESproperty,
Acta. Math. Hungar 149 (1), 58-66, 2016.
- [4] P. A. Dabhi and S. K. Patel Spectral properties and stability of perturbed Cartesian
products with application to BES-property, Proc. Indian Acad. Sci. Math. Sci. 127
(4), 673-687, 2017.
- [5] H. G. Dales, Banach algebras and automatic continuity, London Math. Soc., 24,
Clarendon Press, Oxford, 2000.
- [6] H. R. Ebrahimi Vishki and A. R. Khoddami, Character inner amenability of certain
Banach algebras, Colloq. Math. 122 (2), 225-232, 2011.
- [7] F. Gourdeau, Amenability and the second dual of a Banach algebras, Studia Math.
125 (3), 75-81, 1997.
- [8] A. R. Khoddami and H. R. Ebrahimi Vishki, Biflatness and biprojectivity of Lau
product of Banach algebras, Bull. Iranian Math. Soc. 39 (3), 559-568, 2013.
- [9] A. T. M. Lau, Analysis on a class of Banach algebras with application to harmonic
analysis on locally compact groups and semigroups, Fund. Math. 118 (3), 161-175,
1983.
- [10] A. Minapoor, A. Bodaghi and O.T. Mewomo, Ideal Connes-amenability of Lau product
of Banach algebras, Eurasian Math. J. 12 (4), 74-81, 2021.
- [11] M. S. Monfared, On certain products of Banach algebras with application to harmonic
analysis, Studia Math. 178 (3), 277-294, 2007.
- [12] G. J. Murphy, $C^*$-algebras and operator theory, Academic Press, 1990.
- [13] M. Nemati and H. Javanshiri, Some homological and cohomological notions on T-Lau
product of Banach algebras, Banach J. Math. Anal. 9 (2), 183-195, 2015.
- [14] S. E. Takahasi, H. Takagi and T. Miura, A characterization of multipliers of a Lau
algebras constructed by semisimple commutative Banach algebras, Taiwan J. Math.
20 (6), 1401-1415, 2016.
Year 2024,
Volume: 53 Issue: 3, 777 - 787, 27.06.2024
Mohammad Valaei
,
Abbas Zıvarı-kazempour
References
- [1] F. Abtahi, A. Ghafarpanah and A. Rejali, Biprojectivity and biflatness of Lau product
of Banach algebras defined by a Banach algebras morphism, Bull. Aust. Math. Soc.
91 (1), 134-144, 2015.
- [2] S. J. Bhatt and P. A. Dabhi, Arens regularity and amenability of Lau product of
Banach algebras defined by a Banach algebra morphism, Bull. Aust. Math. Soc. 87,
195-206, 2013.
- [3] P. A. Dabhi, Multipliers of perturbed Cartesian products with application to BESproperty,
Acta. Math. Hungar 149 (1), 58-66, 2016.
- [4] P. A. Dabhi and S. K. Patel Spectral properties and stability of perturbed Cartesian
products with application to BES-property, Proc. Indian Acad. Sci. Math. Sci. 127
(4), 673-687, 2017.
- [5] H. G. Dales, Banach algebras and automatic continuity, London Math. Soc., 24,
Clarendon Press, Oxford, 2000.
- [6] H. R. Ebrahimi Vishki and A. R. Khoddami, Character inner amenability of certain
Banach algebras, Colloq. Math. 122 (2), 225-232, 2011.
- [7] F. Gourdeau, Amenability and the second dual of a Banach algebras, Studia Math.
125 (3), 75-81, 1997.
- [8] A. R. Khoddami and H. R. Ebrahimi Vishki, Biflatness and biprojectivity of Lau
product of Banach algebras, Bull. Iranian Math. Soc. 39 (3), 559-568, 2013.
- [9] A. T. M. Lau, Analysis on a class of Banach algebras with application to harmonic
analysis on locally compact groups and semigroups, Fund. Math. 118 (3), 161-175,
1983.
- [10] A. Minapoor, A. Bodaghi and O.T. Mewomo, Ideal Connes-amenability of Lau product
of Banach algebras, Eurasian Math. J. 12 (4), 74-81, 2021.
- [11] M. S. Monfared, On certain products of Banach algebras with application to harmonic
analysis, Studia Math. 178 (3), 277-294, 2007.
- [12] G. J. Murphy, $C^*$-algebras and operator theory, Academic Press, 1990.
- [13] M. Nemati and H. Javanshiri, Some homological and cohomological notions on T-Lau
product of Banach algebras, Banach J. Math. Anal. 9 (2), 183-195, 2015.
- [14] S. E. Takahasi, H. Takagi and T. Miura, A characterization of multipliers of a Lau
algebras constructed by semisimple commutative Banach algebras, Taiwan J. Math.
20 (6), 1401-1415, 2016.