Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation formulas for the Tornheim and Euler-type double series

Yıl 2024, Cilt: 53 Sayı: 4, 926 - 941, 27.08.2024
https://doi.org/10.15672/hujms.1165578

Öz

We give closed-form evaluation formulas for the real and imaginary parts of the series $\sum_{m,n=1}^{\infty}\frac{e^{2\pi i\left( mx-ny\right) }} {m^{p}n^{r}\left( mc+n\right) ^{q}},$ $c\in\mathbb{N},$ in terms of certain zeta values. Particular choices of $x$ and $y$ lead to evaluation formulas for some Tornheim-type $\sum_{m,n=1}^{\infty}\frac{1}{m^{p}n^{r}\left( mc+n\right) ^{q}}$ and Euler-type $\sum_{m,n=1}^{\infty}\frac{1}{n^{p}\left( mc+n\right) ^{q}}$ double series and their alternating analogues.

Kaynakça

  • [1] V. Adamchik, On Stirling numbers and Euler sums, J. Comput. Appl. Math. 79 (1), 119–130, 1997.
  • [2] T. Arakawa and M. Kaneko, On multiple L-values, J. Math. Soc. Japan 56 (4), 967– 991, 2004.
  • [3] A. Basu, On the evaluation of Tornheim sums and allied double sums, Ramanujan J. 26, 193–207, 2011.
  • [4] D. Borwein, J. M. Borwein and R. Girgensohn, Explicit evaluation of Euler sums, Proc. Edinb. Math. Soc. 38 (2), 277–294, 1995.
  • [5] J. M. Borwein, I. J. Zucker and J. Boersma, The evaluation of character Euler double sums, Ramanujan J. 15, 377–405, 2008.
  • [6] K. N. Boyadzhiev, Evaluation of Euler-Zagier sums, Int. J. Math. Math. Sci. 27 (7), 404–412, 2001.
  • [7] K. N. Boyadzhiev, Consecutive evaluation of Euler sums, Int. J. Math. Math. Sci. 29 (9), 555–561, 2002.
  • [8] M. Can, Reciprocity formulas for Hall-Wilson-Zagier type Hardy–Berndt sums, Acta Math. Hungar. 163, 118–139, 2021.
  • [9] M. Cenkci and A. Ünal, A two-variable Dirichlet series and its applications, Quaest. Math. 44 (12), 1661–1679, 2021.
  • [10] J. Choi and H. Srivastava. Explicit evaluation of Euler and related sums, Ramanujan J. 10, 51–70, 2005.
  • [11] A. Dil and K. N. Boyadzhiev, Euler sums of hyperharmonic numbers, J. Number Theory 147, 490–498, 2015.
  • [12] A. Dil, I. Mezo and M. Cenkci, Evaluation of Euler-like sums via Hurwitz zeta values, Turkish J. Math. 41, 1640–1655, 2017.
  • [13] O. Espinosa and V. H. Moll, The evaluation of Tornheim double sums, J. Number Theory 116, 200–229, 2006.
  • [14] P. Flajolet and B. Salvy, Euler sums and contour integral representations, Exp. Math. 7, 15–35, 1998.
  • [15] J. G. Huard, K. S. Williams and Z. Nan-Yue, On Tornheim’s double series, Acta Arith. 75 (2), 105–117, 1996.
  • [16] S.-Y. Kadota, T. Okamoto and K. Tasaka, Evaluation of Tornheim’s type of double series, Illinois J. Math. 61 (1-2), 171–186, 2017.
  • [17] M.-S. Kim, On the special values of Tornheım’s multiple series, J. Appl. Math. & Informatics 33 (3-4), 305–315, 2015.
  • [18] Z. Li, On functional relations for the alternating analogues of Tornheim’s double zeta function, Chin. Ann. Math. Ser. B 36 (6), 907–918, 2015.
  • [19] K. Matsumoto, T. Nakamura, H. Ochiai and H. Tsumura, On value-relations, functional relations and singularities of Mordell-Tornheim and related triple zetafunctions, Acta Arith. 132 (2), 99–125, 2008.
  • [20] L. J. Mordell, On the evaluation of some multiple series, J. London Math. Soc. 33, 368–371, 1958.
  • [21] T. Nakamura, A functional relation for the Tornheim double zeta function, Acta Arith. 125 (3), 257–263, 2006.
  • [22] T. Nakamura, Double Lerch series and their functional relations, Aequationes Math. 75 (3), 251–259, 2008.
  • [23] T. Nakamura, Double Lerch value relations and functional relations for Witten zeta functions, Tokyo J. Math. 31 (2), 551–574, 2008.
  • [24] T. Nakamura, Symmetric Tornheim double zeta functions. Abh. Math. Semin. Univ. Hambg. 91, 5–14, 2021.
  • [25] T. Nakamura and K. Tasaka, Remarks on double zeta values of level 2, J. Number Theory 133, 48–54, 2013.
  • [26] N. Nielsen, Handbuch der Theorie der Gammafunktion, Reprinted by Chelsea Publishing Company, Bronx, New York. 1965.
  • [27] T. Okamoto, Multiple zeta values related with the zeta-function of the root system of type $A_{2},$ $B_{2}$ and $G_{2}$, Comment. Math. Univ. St. Pauli 61 (1), 9–27, 2012.
  • [28] J. Quan, C. Xu and X. Zhang, Some evaluations of parametric Euler type sums of harmonic numbers, Integral Transforms and Special Functions 34 (2), 162–179, 2023.
  • [29] H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht-Boston-London, 2001.
  • [30] M. V. Subbarao and R. Sitaramachandrarao, On some infinite series of L. J. Mordell and their analogues, Pacific J. Math. 119, 245–255, 1985.
  • [31] L. Tornheim, Harmonic double series, Amer. J. Math. 72, 303–314, 1950.
  • [32] H. Tsumura, On some combinatorial relations for Tornheim’s double series, Acta Arith. 105, 239–252, 2002.
  • [33] H. Tsumura, On alternating analogues of Tornheim’s double series, Proc. Amer. Math. Soc. 131, 3633–3641, 2003.
  • [34] H. Tsumura, On evaluation formulas for double L-values, Bull. Aust. Math. Soc. 70 (2), 2004, 213-221.
  • [35] H. Tsumura, Evaluation formulas for Tornheim’s type of alternating double series, Math. Comp. 73, 251–258, 2004.
  • [36] H. Tsumura, On functional relations between the Mordell-Tornheim double zeta functions and the Riemann zeta function, Math. Proc. Cambridge Philos. Soc. 142, 395– 405, 2007.
  • [37] H. Tsumura, On alternating analogues of Tornheim’s double series II, Ramanujan J. 18, 81–90, 2009.
  • [38] C. Xu and Z. Li, Tornheim type series and nonlinear Euler sums, J. Number Theory 174, 40–67, 2017.
  • [39] J. Yang and Y. Wang, Summation formulae in relation to Euler sums, Integral Transforms Spec. Funct. 28 (5), 336–349, 2017.
  • [40] W. Wang and L. Yanhong, Euler sums and Stirling sums, J. Number Theory 185, 160–193, 2018.
  • [41] X. Zhou, T. Cai and D. Bradley, Signed q-analogs of Tornheim’s double series, Proc. Amer. Math. Soc. 136 (8), 2689–2698, 2008.
Yıl 2024, Cilt: 53 Sayı: 4, 926 - 941, 27.08.2024
https://doi.org/10.15672/hujms.1165578

Öz

Kaynakça

  • [1] V. Adamchik, On Stirling numbers and Euler sums, J. Comput. Appl. Math. 79 (1), 119–130, 1997.
  • [2] T. Arakawa and M. Kaneko, On multiple L-values, J. Math. Soc. Japan 56 (4), 967– 991, 2004.
  • [3] A. Basu, On the evaluation of Tornheim sums and allied double sums, Ramanujan J. 26, 193–207, 2011.
  • [4] D. Borwein, J. M. Borwein and R. Girgensohn, Explicit evaluation of Euler sums, Proc. Edinb. Math. Soc. 38 (2), 277–294, 1995.
  • [5] J. M. Borwein, I. J. Zucker and J. Boersma, The evaluation of character Euler double sums, Ramanujan J. 15, 377–405, 2008.
  • [6] K. N. Boyadzhiev, Evaluation of Euler-Zagier sums, Int. J. Math. Math. Sci. 27 (7), 404–412, 2001.
  • [7] K. N. Boyadzhiev, Consecutive evaluation of Euler sums, Int. J. Math. Math. Sci. 29 (9), 555–561, 2002.
  • [8] M. Can, Reciprocity formulas for Hall-Wilson-Zagier type Hardy–Berndt sums, Acta Math. Hungar. 163, 118–139, 2021.
  • [9] M. Cenkci and A. Ünal, A two-variable Dirichlet series and its applications, Quaest. Math. 44 (12), 1661–1679, 2021.
  • [10] J. Choi and H. Srivastava. Explicit evaluation of Euler and related sums, Ramanujan J. 10, 51–70, 2005.
  • [11] A. Dil and K. N. Boyadzhiev, Euler sums of hyperharmonic numbers, J. Number Theory 147, 490–498, 2015.
  • [12] A. Dil, I. Mezo and M. Cenkci, Evaluation of Euler-like sums via Hurwitz zeta values, Turkish J. Math. 41, 1640–1655, 2017.
  • [13] O. Espinosa and V. H. Moll, The evaluation of Tornheim double sums, J. Number Theory 116, 200–229, 2006.
  • [14] P. Flajolet and B. Salvy, Euler sums and contour integral representations, Exp. Math. 7, 15–35, 1998.
  • [15] J. G. Huard, K. S. Williams and Z. Nan-Yue, On Tornheim’s double series, Acta Arith. 75 (2), 105–117, 1996.
  • [16] S.-Y. Kadota, T. Okamoto and K. Tasaka, Evaluation of Tornheim’s type of double series, Illinois J. Math. 61 (1-2), 171–186, 2017.
  • [17] M.-S. Kim, On the special values of Tornheım’s multiple series, J. Appl. Math. & Informatics 33 (3-4), 305–315, 2015.
  • [18] Z. Li, On functional relations for the alternating analogues of Tornheim’s double zeta function, Chin. Ann. Math. Ser. B 36 (6), 907–918, 2015.
  • [19] K. Matsumoto, T. Nakamura, H. Ochiai and H. Tsumura, On value-relations, functional relations and singularities of Mordell-Tornheim and related triple zetafunctions, Acta Arith. 132 (2), 99–125, 2008.
  • [20] L. J. Mordell, On the evaluation of some multiple series, J. London Math. Soc. 33, 368–371, 1958.
  • [21] T. Nakamura, A functional relation for the Tornheim double zeta function, Acta Arith. 125 (3), 257–263, 2006.
  • [22] T. Nakamura, Double Lerch series and their functional relations, Aequationes Math. 75 (3), 251–259, 2008.
  • [23] T. Nakamura, Double Lerch value relations and functional relations for Witten zeta functions, Tokyo J. Math. 31 (2), 551–574, 2008.
  • [24] T. Nakamura, Symmetric Tornheim double zeta functions. Abh. Math. Semin. Univ. Hambg. 91, 5–14, 2021.
  • [25] T. Nakamura and K. Tasaka, Remarks on double zeta values of level 2, J. Number Theory 133, 48–54, 2013.
  • [26] N. Nielsen, Handbuch der Theorie der Gammafunktion, Reprinted by Chelsea Publishing Company, Bronx, New York. 1965.
  • [27] T. Okamoto, Multiple zeta values related with the zeta-function of the root system of type $A_{2},$ $B_{2}$ and $G_{2}$, Comment. Math. Univ. St. Pauli 61 (1), 9–27, 2012.
  • [28] J. Quan, C. Xu and X. Zhang, Some evaluations of parametric Euler type sums of harmonic numbers, Integral Transforms and Special Functions 34 (2), 162–179, 2023.
  • [29] H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht-Boston-London, 2001.
  • [30] M. V. Subbarao and R. Sitaramachandrarao, On some infinite series of L. J. Mordell and their analogues, Pacific J. Math. 119, 245–255, 1985.
  • [31] L. Tornheim, Harmonic double series, Amer. J. Math. 72, 303–314, 1950.
  • [32] H. Tsumura, On some combinatorial relations for Tornheim’s double series, Acta Arith. 105, 239–252, 2002.
  • [33] H. Tsumura, On alternating analogues of Tornheim’s double series, Proc. Amer. Math. Soc. 131, 3633–3641, 2003.
  • [34] H. Tsumura, On evaluation formulas for double L-values, Bull. Aust. Math. Soc. 70 (2), 2004, 213-221.
  • [35] H. Tsumura, Evaluation formulas for Tornheim’s type of alternating double series, Math. Comp. 73, 251–258, 2004.
  • [36] H. Tsumura, On functional relations between the Mordell-Tornheim double zeta functions and the Riemann zeta function, Math. Proc. Cambridge Philos. Soc. 142, 395– 405, 2007.
  • [37] H. Tsumura, On alternating analogues of Tornheim’s double series II, Ramanujan J. 18, 81–90, 2009.
  • [38] C. Xu and Z. Li, Tornheim type series and nonlinear Euler sums, J. Number Theory 174, 40–67, 2017.
  • [39] J. Yang and Y. Wang, Summation formulae in relation to Euler sums, Integral Transforms Spec. Funct. 28 (5), 336–349, 2017.
  • [40] W. Wang and L. Yanhong, Euler sums and Stirling sums, J. Number Theory 185, 160–193, 2018.
  • [41] X. Zhou, T. Cai and D. Bradley, Signed q-analogs of Tornheim’s double series, Proc. Amer. Math. Soc. 136 (8), 2689–2698, 2008.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Matematik
Yazarlar

Emre Çay 0000-0001-9352-373X

Mümün Can 0000-0002-7149-4816

Levent Kargın

Erken Görünüm Tarihi 14 Eylül 2023
Yayımlanma Tarihi 27 Ağustos 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 53 Sayı: 4

Kaynak Göster

APA Çay, E., Can, M., & Kargın, L. (2024). Evaluation formulas for the Tornheim and Euler-type double series. Hacettepe Journal of Mathematics and Statistics, 53(4), 926-941. https://doi.org/10.15672/hujms.1165578
AMA Çay E, Can M, Kargın L. Evaluation formulas for the Tornheim and Euler-type double series. Hacettepe Journal of Mathematics and Statistics. Ağustos 2024;53(4):926-941. doi:10.15672/hujms.1165578
Chicago Çay, Emre, Mümün Can, ve Levent Kargın. “Evaluation Formulas for the Tornheim and Euler-Type Double Series”. Hacettepe Journal of Mathematics and Statistics 53, sy. 4 (Ağustos 2024): 926-41. https://doi.org/10.15672/hujms.1165578.
EndNote Çay E, Can M, Kargın L (01 Ağustos 2024) Evaluation formulas for the Tornheim and Euler-type double series. Hacettepe Journal of Mathematics and Statistics 53 4 926–941.
IEEE E. Çay, M. Can, ve L. Kargın, “Evaluation formulas for the Tornheim and Euler-type double series”, Hacettepe Journal of Mathematics and Statistics, c. 53, sy. 4, ss. 926–941, 2024, doi: 10.15672/hujms.1165578.
ISNAD Çay, Emre vd. “Evaluation Formulas for the Tornheim and Euler-Type Double Series”. Hacettepe Journal of Mathematics and Statistics 53/4 (Ağustos 2024), 926-941. https://doi.org/10.15672/hujms.1165578.
JAMA Çay E, Can M, Kargın L. Evaluation formulas for the Tornheim and Euler-type double series. Hacettepe Journal of Mathematics and Statistics. 2024;53:926–941.
MLA Çay, Emre vd. “Evaluation Formulas for the Tornheim and Euler-Type Double Series”. Hacettepe Journal of Mathematics and Statistics, c. 53, sy. 4, 2024, ss. 926-41, doi:10.15672/hujms.1165578.
Vancouver Çay E, Can M, Kargın L. Evaluation formulas for the Tornheim and Euler-type double series. Hacettepe Journal of Mathematics and Statistics. 2024;53(4):926-41.