Research Article
BibTex RIS Cite

Transitive permutation groups with elements of movement $m$ or $m-2$

Year 2024, Volume: 53 Issue: 4, 1102 - 1117, 27.08.2024
https://doi.org/10.15672/hujms.1223815

Abstract

Let $G$ be a permutation group on a set $\Omega$ with no fixed points in $\Omega$ and let $m$ be a positive integer. If for each subset $\Gamma$ of $\Omega$ the size $|\Gamma^g\setminus\Gamma|$ is bounded, for $g\in G,$ we define the movement of $g$ as the $\max|\Gamma^g\setminus\Gamma|$ over all subsets $\Gamma$ of $\Omega,$ and the movement of $G$ is defined as the maximum of move$(g)$ over all non-identity elements of $g\in G.$ In this paper we classify all transitive permutation groups with bounded movement equal to $m$ that are not a $2$-group, but in which every non-identity element has movement $m$ or $m-2$.

References

  • [1] M. Alaeiyan and B. Askari, Transitive permutation groups with elements of movement m or m-1, Math. Reports 14 (64), 4 , 317-324, 2012.
  • [2] M. Alaeiyan and M. Rezaei, Intransitive permutation groups with bounded movement having maximum degree, Math. Rep. 13 (63), 109-115, 2011.
  • [3] M. Alaeiyan and H. Tavallaee, Permutation groups with the same movement, Carpathian J. Math., 147-156, 2009.
  • [4] T. Dokchitser, Transitive groups of degree up to 31, accessed on 27 july 2022. URL: Group- Names.org.https://people.maths.bris.ac.uk/ matyd/GroupNames/T31.htmltml.
  • [5] B. Fein, W. M. Kantor, and M. Schacher, Relative brauer groups ii, J. reine angew. Math 328, 39-57, 1981.
  • [6] G. Group, Gap-groups, algorithms, and programming, version 4.11. 1, 2021. URL: https://www. gap-system. org.
  • [7] A. Hassani, M. Alaeiyan(Khayaty), E. Khukhro, and C. E. Praeger, Transitive permutation groups with bounded movement having maximal degree, J. Algebra 214 (1), 317-337, 1999.
  • [8] A. Mann and C. E. Praeger, Transitive permutation groups of minimal movement, J. Algebra 181(3), 903-911, 1996.
  • [9] C. E. Praeger, On permutation groups with bounded movement, J. Algebra 144 (2), 436-442, 1991.
  • [10] J. J. Rotman, An introduction to the theory of groups, Number 3rd ed. Allyn and Bacon, Boston, 1984.
  • [11] T. Tsuzuku, Finite groups and finite geometries, volume 78, Cambridge University Press, 1982.
Year 2024, Volume: 53 Issue: 4, 1102 - 1117, 27.08.2024
https://doi.org/10.15672/hujms.1223815

Abstract

References

  • [1] M. Alaeiyan and B. Askari, Transitive permutation groups with elements of movement m or m-1, Math. Reports 14 (64), 4 , 317-324, 2012.
  • [2] M. Alaeiyan and M. Rezaei, Intransitive permutation groups with bounded movement having maximum degree, Math. Rep. 13 (63), 109-115, 2011.
  • [3] M. Alaeiyan and H. Tavallaee, Permutation groups with the same movement, Carpathian J. Math., 147-156, 2009.
  • [4] T. Dokchitser, Transitive groups of degree up to 31, accessed on 27 july 2022. URL: Group- Names.org.https://people.maths.bris.ac.uk/ matyd/GroupNames/T31.htmltml.
  • [5] B. Fein, W. M. Kantor, and M. Schacher, Relative brauer groups ii, J. reine angew. Math 328, 39-57, 1981.
  • [6] G. Group, Gap-groups, algorithms, and programming, version 4.11. 1, 2021. URL: https://www. gap-system. org.
  • [7] A. Hassani, M. Alaeiyan(Khayaty), E. Khukhro, and C. E. Praeger, Transitive permutation groups with bounded movement having maximal degree, J. Algebra 214 (1), 317-337, 1999.
  • [8] A. Mann and C. E. Praeger, Transitive permutation groups of minimal movement, J. Algebra 181(3), 903-911, 1996.
  • [9] C. E. Praeger, On permutation groups with bounded movement, J. Algebra 144 (2), 436-442, 1991.
  • [10] J. J. Rotman, An introduction to the theory of groups, Number 3rd ed. Allyn and Bacon, Boston, 1984.
  • [11] T. Tsuzuku, Finite groups and finite geometries, volume 78, Cambridge University Press, 1982.
There are 11 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Mehdi Alaeiyan 0000-0003-2185-5967

Murtadha Shabeeb This is me 0000-0002-5987-4082

Masoumeh Akbarizadeh 0000-0002-4142-9394

Early Pub Date April 14, 2024
Publication Date August 27, 2024
Published in Issue Year 2024 Volume: 53 Issue: 4

Cite

APA Alaeiyan, M., Shabeeb, M., & Akbarizadeh, M. (2024). Transitive permutation groups with elements of movement $m$ or $m-2$. Hacettepe Journal of Mathematics and Statistics, 53(4), 1102-1117. https://doi.org/10.15672/hujms.1223815
AMA Alaeiyan M, Shabeeb M, Akbarizadeh M. Transitive permutation groups with elements of movement $m$ or $m-2$. Hacettepe Journal of Mathematics and Statistics. August 2024;53(4):1102-1117. doi:10.15672/hujms.1223815
Chicago Alaeiyan, Mehdi, Murtadha Shabeeb, and Masoumeh Akbarizadeh. “Transitive Permutation Groups With Elements of Movement $m$ or $m-2$”. Hacettepe Journal of Mathematics and Statistics 53, no. 4 (August 2024): 1102-17. https://doi.org/10.15672/hujms.1223815.
EndNote Alaeiyan M, Shabeeb M, Akbarizadeh M (August 1, 2024) Transitive permutation groups with elements of movement $m$ or $m-2$. Hacettepe Journal of Mathematics and Statistics 53 4 1102–1117.
IEEE M. Alaeiyan, M. Shabeeb, and M. Akbarizadeh, “Transitive permutation groups with elements of movement $m$ or $m-2$”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 4, pp. 1102–1117, 2024, doi: 10.15672/hujms.1223815.
ISNAD Alaeiyan, Mehdi et al. “Transitive Permutation Groups With Elements of Movement $m$ or $m-2$”. Hacettepe Journal of Mathematics and Statistics 53/4 (August 2024), 1102-1117. https://doi.org/10.15672/hujms.1223815.
JAMA Alaeiyan M, Shabeeb M, Akbarizadeh M. Transitive permutation groups with elements of movement $m$ or $m-2$. Hacettepe Journal of Mathematics and Statistics. 2024;53:1102–1117.
MLA Alaeiyan, Mehdi et al. “Transitive Permutation Groups With Elements of Movement $m$ or $m-2$”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 4, 2024, pp. 1102-17, doi:10.15672/hujms.1223815.
Vancouver Alaeiyan M, Shabeeb M, Akbarizadeh M. Transitive permutation groups with elements of movement $m$ or $m-2$. Hacettepe Journal of Mathematics and Statistics. 2024;53(4):1102-17.