A new class of ideal Connes amenability
Year 2024,
Volume: 53 Issue: 6, 1686 - 1697, 28.12.2024
Ahmad Minapoor
,
Ali Rejali
,
Mohammad Javad Mehdıpour
Abstract
In this paper, we introduce the notion of $\sigma-$ideally Connes amenable for dual Banach algebras and give some hereditary properties for this new notion. We also investigate $\sigma-$ideally Connes amenability of $\ell^1(G, \omega)$. We show that if $\omega$ is a diagonally bounded weight function on discrete group $G$ and $\sigma$ is isometrically isomorphism of $\ell^1(G, \omega)$, then $\ell^1(G, \omega)$ is $\sigma-$ideally Connes amenable and so it is ideally Connes amenable.
References
- [1] U. Bader, T. Gelander and N. Monod, A fixed point theorem for $L^1$ spaces, Invent.
Math. 189 (1), 143-148, 2012.
- [2] A. Connes, Classification of injective factors. Cases$II_{1},$ $II_{\infty },$ $III_{\lambda },$ $\lambda \not=1$, Ann. of
Math. 104 (1), 73-115, 1976.
- [3] A. Connes, On the cohomology of operator algebras, J. Functional Analysis 28 (2),
248-253, 1978.
- [4] A. Y. Helemskii, Homological essence of amenability in the sense of A. Connes: the
injectivity of the predual bimodule, (Russian); translated from Mat. Sb. 180 (12)
(1989), 1680–1690, 1728 Math. USSR-Sb. 68 (2), 555-566, 1991.
- [5] B. E. Johnson, Cohomology in Banach algebras, Memoirs of the American Mathematical
Society 127, American Mathematical Society, Providence, R.I., 1972.
- [6] B. E. Johnson, R.V. Kadison and J. R. Ringrose, Cohomology of operator algebras,
III. Reduction to normal cohomology, Bull. Soc. Math. France 100, 73-96, 1972.
- [7] A. Minapoor, A. Bodaghi and D. Ebrahimi Bagha, Ideal Connes-amenability of dual
Banach algebras, Mediterr. J. Math. 14 (4), Paper No. 174, 12 pp, 2017.
- [8] A. Minapoor, A. Bodaghi and D. Ebrahimi Bagha, Derivations on the tensor product
of Banach algebras, J. Math. Ext. 11, 117-125, 2017.
- [9] A. Minapoor and O.T. Mewomo, Zero set of ideals in Beurling algebras, Politehn.
Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 82 (3), 129-138, 2020.
- [10] A. Minapoor, Approximate ideal Connes amenability of dual Banach algebras and
ideal Connes amenability of discrete Beurling algebras, Eurasian Math. J. 11 (2),
72-85, 2020.
- [11] A. Minapoor, Ideal Connes amenability of $l^1$-Munn algebras and its application to
semigroup algebras, Semigroup Forum 102 (3), 756-764, 2021.
- [12] A. Minapoor and A. Zivari-Kazempour, Ideal Connes-amenability of certain dual
Banach algebras, Complex. Anal. Oper. Th. 17, 27, 2023.
- [13] M. Mirzavaziri and M. S. Moslehian, $\sigma$-amenability of Banach algebras, Southeast
Asian Bull. Math. 33 (1), 89-99, 2009.
- [14] M. Momeni, T. Yazdanpanah and M. R. Mardanbeigi, $\sigma$-approximately contractible
Banach algebras, Abstr. Appl. Anal. 2012, Art. ID 653140, 2012.
- [15] V. Runde, Lectures on Amenability, Lecture Notes in Mathematics, Springer-Verlag,
Berlin-Heidelberg-New York, 2002.
- [16] A. Teymouri, A. Bodaghi and D. E. Bagha, Derivations into annihilators of the ideals
of Banach algebras, Demonstr. Math. 52 (1), 20–28, 2019.
- [17] S. Zadeh, Isometric isomorphisms of Beurling algebras, J. Math. Anal. Appl. 438 (1),
1-13, 2016.
- [18] Y. Zhang, Weak amenability of a class of Banach algebras, Canad. Math. Bull. 44,
504–508, 2001.
Year 2024,
Volume: 53 Issue: 6, 1686 - 1697, 28.12.2024
Ahmad Minapoor
,
Ali Rejali
,
Mohammad Javad Mehdıpour
References
- [1] U. Bader, T. Gelander and N. Monod, A fixed point theorem for $L^1$ spaces, Invent.
Math. 189 (1), 143-148, 2012.
- [2] A. Connes, Classification of injective factors. Cases$II_{1},$ $II_{\infty },$ $III_{\lambda },$ $\lambda \not=1$, Ann. of
Math. 104 (1), 73-115, 1976.
- [3] A. Connes, On the cohomology of operator algebras, J. Functional Analysis 28 (2),
248-253, 1978.
- [4] A. Y. Helemskii, Homological essence of amenability in the sense of A. Connes: the
injectivity of the predual bimodule, (Russian); translated from Mat. Sb. 180 (12)
(1989), 1680–1690, 1728 Math. USSR-Sb. 68 (2), 555-566, 1991.
- [5] B. E. Johnson, Cohomology in Banach algebras, Memoirs of the American Mathematical
Society 127, American Mathematical Society, Providence, R.I., 1972.
- [6] B. E. Johnson, R.V. Kadison and J. R. Ringrose, Cohomology of operator algebras,
III. Reduction to normal cohomology, Bull. Soc. Math. France 100, 73-96, 1972.
- [7] A. Minapoor, A. Bodaghi and D. Ebrahimi Bagha, Ideal Connes-amenability of dual
Banach algebras, Mediterr. J. Math. 14 (4), Paper No. 174, 12 pp, 2017.
- [8] A. Minapoor, A. Bodaghi and D. Ebrahimi Bagha, Derivations on the tensor product
of Banach algebras, J. Math. Ext. 11, 117-125, 2017.
- [9] A. Minapoor and O.T. Mewomo, Zero set of ideals in Beurling algebras, Politehn.
Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 82 (3), 129-138, 2020.
- [10] A. Minapoor, Approximate ideal Connes amenability of dual Banach algebras and
ideal Connes amenability of discrete Beurling algebras, Eurasian Math. J. 11 (2),
72-85, 2020.
- [11] A. Minapoor, Ideal Connes amenability of $l^1$-Munn algebras and its application to
semigroup algebras, Semigroup Forum 102 (3), 756-764, 2021.
- [12] A. Minapoor and A. Zivari-Kazempour, Ideal Connes-amenability of certain dual
Banach algebras, Complex. Anal. Oper. Th. 17, 27, 2023.
- [13] M. Mirzavaziri and M. S. Moslehian, $\sigma$-amenability of Banach algebras, Southeast
Asian Bull. Math. 33 (1), 89-99, 2009.
- [14] M. Momeni, T. Yazdanpanah and M. R. Mardanbeigi, $\sigma$-approximately contractible
Banach algebras, Abstr. Appl. Anal. 2012, Art. ID 653140, 2012.
- [15] V. Runde, Lectures on Amenability, Lecture Notes in Mathematics, Springer-Verlag,
Berlin-Heidelberg-New York, 2002.
- [16] A. Teymouri, A. Bodaghi and D. E. Bagha, Derivations into annihilators of the ideals
of Banach algebras, Demonstr. Math. 52 (1), 20–28, 2019.
- [17] S. Zadeh, Isometric isomorphisms of Beurling algebras, J. Math. Anal. Appl. 438 (1),
1-13, 2016.
- [18] Y. Zhang, Weak amenability of a class of Banach algebras, Canad. Math. Bull. 44,
504–508, 2001.