Research Article
BibTex RIS Cite

Year 2025, Volume: 54 Issue: 5, 1859 - 1871, 29.10.2025
https://doi.org/10.15672/hujms.1525278

Abstract

References

  • [1] D.A. Benson, S.W. Wheatcraft and M.M. Meerschaert, Application of a fractional advection-dispersion equation, Water ResourRes. 36 (6), 1403-1412, 2000.
  • [2] X. Cheng and Z. Li, Uniqueness and stability for inverse source problem for fractional diffusion-wave equations, J. Inverse Ill-Posed Probl. 31 (6), 885-904, 2023.
  • [3] G. Floridia and M. Yamamoto, Backward problems in time for fractional diffusionwave equation, Inverse Probl. 36 (12) 125016, 2020.
  • [4] R. Gorenflo, Y. Luchko and M. Yamamoto, Time-fractional diffusion equation in the fractional Sobolev spaces, Fract. Calc. Appl. Anal. 18, 799-820, 2015.
  • [5] Y. Kian, Z. Li, Y. Liu and M. Yamamoto, The uniqueness of inverse problems for a fractional equation with a single measurement, Math. Ann. 380 (3), 1465-1495, 2021.
  • [6] A. Kubica, K. Ryszewska and M. Yamamoto, Time-fractional differential equations: A theoretical introduction, Springer, Singapore, 2020.
  • [7] M. Levy and B. Berkowitz, Measurement and analysis of non-Fickian dispersion in heterogeneous porous media, J. Contam. Hydrol. 64 (3-4), 203-226, 2003.
  • [8] Z. Li, X. Huang and Y. Liu, Initial-boundary value problems for coupled systems of time-fractional diffusion equations, Fract. Calc. Appl. Anal. 26 (2), 533-566, 2023.
  • [9] Z. Li, Y. Liu and M. Yamamoto, Initial-boundary value problems for multi-term timefractional diffusion equations with positive constant coefficients, Appl. Math. Comput. 257, 381-397, 2015.
  • [10] Z. Li, Y. Liu and M. Yamamoto, Inverse problems of determining parameters of the fractional partial differential equations, In: Kochubei A and Luchko Y, editors. Volume 2 Fractional Differential Equations, 431-442. De Gruyter, Berlin, Boston, 2019.
  • [11] Z. Li and M. Yamamoto, Inverse problems of determining coefficients of the fractional partial differential equations, Handbook of fractional calculus with applications. Vol. 2, 443-464, 2019.
  • [12] G. Li, D. Zhang, X. Jia and M. Yamamoto, Simultaneous inversion for the spacedependent diffusion coefficient and the fractional order in the time-fractional diffusion equation, Inverse Probl. 29 (6), 065014, 2013.
  • [13] C.L. Lin and G. Nakamura, Unique continuation property for anomalous slow diffusion equation, Commun. Partial Differ. Equ. 41 (5), 749-758, 2016.
  • [14] Y. Liu, Z. Li and M. Yamamoto, Inverse problems of determining sources of the fractional partial differential equations, Handbook of fractional calculus with applications. Vol. 2, 411-430, 2019.
  • [15] Y. Luchko, Maximum principle for the generalized time-fractional diffusion equation, J. Math. Anal. Appl. 351 (1), 218-223, 2009.
  • [16] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Elsevier, 1998.
  • [17] K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl. 382 (1), 426-447, 2011.
  • [18] T. Wei and X. Yan, Uniqueness for identifying a space-dependent zeroth-order coefficient in a time-fractional diffusion-wave equation from a single boundary point measurement, Appl. Math. Lett. 112, 106814, 2021.
  • [19] T. Wei and Y. Zhang, The backward problem for a time-fractional diffusion-wave equation in a bounded domain, Comput. Math. Appl. 75 (10), 3632-3648, 2018.
  • [20] M. Yamamoto, Uniqueness for inverse source problems for fractional diffusion-wave equations by data during not acting time, Inverse Probl. 39 (2), 024004, 2023.
  • [21] Y. Zhang, T. Wei and Y.X. Zhang, Simultaneous inversion of two initial values for a time-fractional diffusion-wave equation, Numer. Methods Partial Differ. Equ. 37 (1), 24-43, 2021.

Unique determination of the initial values of the time-fractional diffusion-wave equation by lateral Cauchy data

Year 2025, Volume: 54 Issue: 5, 1859 - 1871, 29.10.2025
https://doi.org/10.15672/hujms.1525278

Abstract

This paper focuses on the determination of initial values in fractional wave equations. As is known, there are two initial conditions in fractional wave equations, and we aim to reconstruct these two unknown quantities through the minimum possible lateral Cauchy data. We construct the Liouville theorem on complex plane with the negative real axis removed, which helps us to prove the uniqueness of the inverse problem under consideration. In the final section of this paper, we propose an algorithm that utilizes lateral Cauchy data to recover the two initial values.

References

  • [1] D.A. Benson, S.W. Wheatcraft and M.M. Meerschaert, Application of a fractional advection-dispersion equation, Water ResourRes. 36 (6), 1403-1412, 2000.
  • [2] X. Cheng and Z. Li, Uniqueness and stability for inverse source problem for fractional diffusion-wave equations, J. Inverse Ill-Posed Probl. 31 (6), 885-904, 2023.
  • [3] G. Floridia and M. Yamamoto, Backward problems in time for fractional diffusionwave equation, Inverse Probl. 36 (12) 125016, 2020.
  • [4] R. Gorenflo, Y. Luchko and M. Yamamoto, Time-fractional diffusion equation in the fractional Sobolev spaces, Fract. Calc. Appl. Anal. 18, 799-820, 2015.
  • [5] Y. Kian, Z. Li, Y. Liu and M. Yamamoto, The uniqueness of inverse problems for a fractional equation with a single measurement, Math. Ann. 380 (3), 1465-1495, 2021.
  • [6] A. Kubica, K. Ryszewska and M. Yamamoto, Time-fractional differential equations: A theoretical introduction, Springer, Singapore, 2020.
  • [7] M. Levy and B. Berkowitz, Measurement and analysis of non-Fickian dispersion in heterogeneous porous media, J. Contam. Hydrol. 64 (3-4), 203-226, 2003.
  • [8] Z. Li, X. Huang and Y. Liu, Initial-boundary value problems for coupled systems of time-fractional diffusion equations, Fract. Calc. Appl. Anal. 26 (2), 533-566, 2023.
  • [9] Z. Li, Y. Liu and M. Yamamoto, Initial-boundary value problems for multi-term timefractional diffusion equations with positive constant coefficients, Appl. Math. Comput. 257, 381-397, 2015.
  • [10] Z. Li, Y. Liu and M. Yamamoto, Inverse problems of determining parameters of the fractional partial differential equations, In: Kochubei A and Luchko Y, editors. Volume 2 Fractional Differential Equations, 431-442. De Gruyter, Berlin, Boston, 2019.
  • [11] Z. Li and M. Yamamoto, Inverse problems of determining coefficients of the fractional partial differential equations, Handbook of fractional calculus with applications. Vol. 2, 443-464, 2019.
  • [12] G. Li, D. Zhang, X. Jia and M. Yamamoto, Simultaneous inversion for the spacedependent diffusion coefficient and the fractional order in the time-fractional diffusion equation, Inverse Probl. 29 (6), 065014, 2013.
  • [13] C.L. Lin and G. Nakamura, Unique continuation property for anomalous slow diffusion equation, Commun. Partial Differ. Equ. 41 (5), 749-758, 2016.
  • [14] Y. Liu, Z. Li and M. Yamamoto, Inverse problems of determining sources of the fractional partial differential equations, Handbook of fractional calculus with applications. Vol. 2, 411-430, 2019.
  • [15] Y. Luchko, Maximum principle for the generalized time-fractional diffusion equation, J. Math. Anal. Appl. 351 (1), 218-223, 2009.
  • [16] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Elsevier, 1998.
  • [17] K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl. 382 (1), 426-447, 2011.
  • [18] T. Wei and X. Yan, Uniqueness for identifying a space-dependent zeroth-order coefficient in a time-fractional diffusion-wave equation from a single boundary point measurement, Appl. Math. Lett. 112, 106814, 2021.
  • [19] T. Wei and Y. Zhang, The backward problem for a time-fractional diffusion-wave equation in a bounded domain, Comput. Math. Appl. 75 (10), 3632-3648, 2018.
  • [20] M. Yamamoto, Uniqueness for inverse source problems for fractional diffusion-wave equations by data during not acting time, Inverse Probl. 39 (2), 024004, 2023.
  • [21] Y. Zhang, T. Wei and Y.X. Zhang, Simultaneous inversion of two initial values for a time-fractional diffusion-wave equation, Numer. Methods Partial Differ. Equ. 37 (1), 24-43, 2021.
There are 21 citations in total.

Details

Primary Language English
Subjects Partial Differential Equations
Journal Section Mathematics
Authors

Xuyan Jiang 0009-0009-4315-5225

Zhiyuan Li 0000-0002-5961-7211

Early Pub Date April 11, 2025
Publication Date October 29, 2025
Submission Date July 31, 2024
Acceptance Date February 18, 2025
Published in Issue Year 2025 Volume: 54 Issue: 5

Cite

APA Jiang, X., & Li, Z. (2025). Unique determination of the initial values of the time-fractional diffusion-wave equation by lateral Cauchy data. Hacettepe Journal of Mathematics and Statistics, 54(5), 1859-1871. https://doi.org/10.15672/hujms.1525278
AMA Jiang X, Li Z. Unique determination of the initial values of the time-fractional diffusion-wave equation by lateral Cauchy data. Hacettepe Journal of Mathematics and Statistics. October 2025;54(5):1859-1871. doi:10.15672/hujms.1525278
Chicago Jiang, Xuyan, and Zhiyuan Li. “Unique Determination of the Initial Values of the Time-Fractional Diffusion-Wave Equation by Lateral Cauchy Data”. Hacettepe Journal of Mathematics and Statistics 54, no. 5 (October 2025): 1859-71. https://doi.org/10.15672/hujms.1525278.
EndNote Jiang X, Li Z (October 1, 2025) Unique determination of the initial values of the time-fractional diffusion-wave equation by lateral Cauchy data. Hacettepe Journal of Mathematics and Statistics 54 5 1859–1871.
IEEE X. Jiang and Z. Li, “Unique determination of the initial values of the time-fractional diffusion-wave equation by lateral Cauchy data”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 5, pp. 1859–1871, 2025, doi: 10.15672/hujms.1525278.
ISNAD Jiang, Xuyan - Li, Zhiyuan. “Unique Determination of the Initial Values of the Time-Fractional Diffusion-Wave Equation by Lateral Cauchy Data”. Hacettepe Journal of Mathematics and Statistics 54/5 (October2025), 1859-1871. https://doi.org/10.15672/hujms.1525278.
JAMA Jiang X, Li Z. Unique determination of the initial values of the time-fractional diffusion-wave equation by lateral Cauchy data. Hacettepe Journal of Mathematics and Statistics. 2025;54:1859–1871.
MLA Jiang, Xuyan and Zhiyuan Li. “Unique Determination of the Initial Values of the Time-Fractional Diffusion-Wave Equation by Lateral Cauchy Data”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 5, 2025, pp. 1859-71, doi:10.15672/hujms.1525278.
Vancouver Jiang X, Li Z. Unique determination of the initial values of the time-fractional diffusion-wave equation by lateral Cauchy data. Hacettepe Journal of Mathematics and Statistics. 2025;54(5):1859-71.