Derleme
BibTex RIS Kaynak Göster

DSÖ CNS5 Kriterlerine Göre Tanımlanan IDH-Wild Tip Gliblastomada MikroRNA'ların Biyobelirteç Potansiyeli ve Terapötik Öneminin Tanımlanması

Yıl 2024, , 1 - 13, 04.06.2024
https://doi.org/10.48124/husagbilder.1481938

Öz

2021 yılında güncellenen Dünya Sağlık Örgütü (DSÖ) CNS5 sınıflandırması, agresif beyin tümörlerinin bir alt grubu olarak tanımlanan IDH-wildtype glioblastomanın tanı ve tedavi yöntemlerinde önemli bir dönüşüme yol açmıştır. Bu yeni sistem, geleneksel doku analizinin yanı sıra moleküler belirteçleri de içeren daha rafine bir yaklaşım sunarak, benzersiz genetik profillere sahip farklı glioblastoma alt tiplerinin tanımlanmasını kolaylaştırmaktadır. Bu alt tiplere IDH-mutant astrositoma, IDH-mutant ve 1p/19q delesyonu bulunan oligodendroglioma ve IDH-wild tip glioblastoma örnek olarak gösterilebilir. Genetik ve hedefli tedavilerdeki gelişmelere rağmen, bu malign tümörlerin tedavisi için hala arayış devam etmektedir. Bu nedenle daha özellikli tanı ve tedavi yöntemlerine olan ihtiyaç inkâr edilemez. MikroRNA'lar (miRNA'lar) moleküler biyolojinin tıp dünyasına bu bağlamda kazandırdığı moleküller olarak ortaya çıkmaktadır. Bu minik moleküller, gen ekspresyonunun ana düzenleyicileri olarak görev yapmaka ve glioblastoma tanısı, prognoz tahmini ve biyobelirleyici geliştirilmesi için muazzam bir potansiyel barındırmaktadır. Son araştırmalar, miRNA'ların tedavi stratejisi olarak kullanılabileceğini vurgulamakta ve bilimsel ilgiyi bu noktaya çekmektedir. Bu inceleme, DSÖ CNS5 sınıflandırması çerçevesinde IDH-wild tip glioblastoma kapsamında miRNA'ların güncel ilişkilerini incelemektedir. Geniş veri tabanlarından yararlanarak, en son DSÖ sınıflandırmasında tanımlanan genetik anormallikler ile düzensiz miRNA'lar arasındaki karmaşık ilişki bu makale kapsamında araştırılmıştır. Önerilen moleküler biyobelirteçleri ve ilişkili miRNA düzensizliğini analiz ederek, bu agresif kanser tipi için kişiselleştirilmiş, miRNA bazlı tedavilerin geliştirilmesinin önünü açmayı amaçlıyoruz.

Kaynakça

  • 1. Yalamarty SSK, Filipczak N, Li X, Subhan MA, Parveen F, Ataide JA, et al. Mechanisms of Resistance and Current Treatment Options for Glioblastoma Multiforme (GBM). Cancers. 2023; 15(7):2116.
  • 2. Torp SH, Solheim O, Skjulsvik AJ. The WHO 2021 Classification of Central Nervous System tumours: a practical update on what neurosurgeons need to know-a minireview. Acta Neurochir (Wien). 2022;164(9):2453-2464.
  • 3. Mattei V, Santilli F, Martellucci S, Delle Monache S, Fabrizi J, Colapietro A, et al. The Importance of Tumor Stem Cells in Glioblastoma Resistance to Therapy. Int J Mol Sci. 2021;22(8):3863.
  • 4. Ali H, Harting R, de Vries R, Ali M, Wurdinger T, Best MG. Blood-Based Biomarkers for Glioma in the Context of Gliomagenesis: A Systematic Review. Front Oncol. 2021;11:665235.
  • 5. Karakaş N, Topcu O, Tüzün E, Kahraman ÖT, Sabancı PA, Aras Y et al. Immunoreactivity against SLC3A2 in high grade gliomas displays positive correlation with glioblastoma patient survival: Potential target for glioma diagnosis and therapy. bioRxiv, 2023-01.
  • 6. Makowska M, Smolarz B, Romanowicz H. microRNAs (miRNAs) in Glioblastoma Multiforme (GBM)-Recent Literature Review. Int J Mol Sci. 2023;24(4):3521.
  • 7. Crespo I, Vital AL, Gonzalez-Tablas M, Patino Mdel C, Otero A, Lopes MC, et al. Molecular and Genomic Alterations in Glioblastoma Multiforme. Am J Pathol. 2015;185(7):1820-33.
  • 8. Hasan H, Afzal M, Castresana JS, Shahi MH. A Comprehensive Review of miRNAs and Their Epigenetic Effects in Glioblastoma. Cells. 2023;12(12):1578.
  • 9. Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, et al. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells. 2020;9(2):276. Published 2020 Jan 23.
  • 10. United States: National Cancer Institute [Internet]. 2024 May 2. Available from: https:// training.seer.cancer.gov/brain/tumors/abstract-code-stage/grading.html
  • 11. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK,, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131(6):803-820.
  • 12. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021;23(8):1231-1251.
  • 13. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54.
  • 14. Bayraktar E, Bayraktar R, Oztatlici H, Lopez-Berestein G, Amero P, Rodriguez-Aguayo C. Targeting miRNAs and Other Non-Coding RNAs as a Therapeutic Approach: An Update. Non-Coding RNA. 2023; 9(2):27.
  • 15. O'Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018;9:402.
  • 16. Wilczynska A, Bushell M. The complexity of miRNA-mediated repression. Cell Death Differ. 2015;22(1):22-33.
  • 17. Petri R, Malmevik J, Fasching L, Åkerblom M, Jakobsson J. miRNAs in brain development. Exp Cell Res. 2014;321(1):84-89.
  • 18. Otmani K, Rouas R, Lewalle P. OncomiRs as noncoding RNAs having functions in cancer: Their role in immune suppression and clinical implications. Front Immunol. 2022;13:913951. 16.
  • 19. Kumar MA, Baba SK, Sadida HQ, Marzooqi SA, Jerobin J, Altemani FH, et al. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther. 2024;9(1):27.
  • 20. Shea A, Harish V, Afzal Z, Chijioke J, Kedir H, Dusmatova S, et al. MicroRNAs in glioblastoma multiforme pathogenesis and therapeutics. Cancer Med. 2016;5(8):1917-1946.
  • 21. Billur D, Yilmaz SG, Yaltirik CK, Ozdogan S, Ture U, Isbir T. Serum miRNA-582-5p and miRNA-363 as Potential Non-Invasive Biomarkers for Glioblastoma Multiforme. Turk Neurosurg. 2022;32(5):854- 60.
  • 22. Fortunato O, Iorio MV. The Therapeutic Potential of MicroRNAs in Cancer: Illusion or Opportunity?. Pharmaceuticals (Basel). 2020;13(12):438.
  • 23. Ahmed SP, Castresana JS, Shahi MH. Glioblastoma and MiRNAs. Cancers (Basel). 2021;13(7):1581.
  • 24. Yuan X, Dai M, Xu D. TERT promoter mutations and GABP transcription factors in carcinogenesis: More foes than friends. Cancer Lett. 2020;493:1-9.
  • 25. Killela PJ, Pirozzi CJ, Healy P, Reitman ZJ, Lipp E, Rasheed BA, et al. Mutations in IDH1, IDH2, and in the TERT promoter define clinically distinct subgroups of adult malignant gliomas. Oncotarget. 2014;5(6):1515-1525.
  • 26. Arita H, Yamasaki K, Matsushita Y, Nakamura T, Shimokawa A, Takami H, et al. A combination of TERT promoter mutation and MGMT methylation status predicts clinically relevant subgroups of newly diagnosed glioblastomas. Acta Neuropathol Commun. 2016;4(1):79.
  • 27. Gao K, Li G, Qu Y, Wang M, Cui B, Ji M, et al. TERT promoter mutations and long telomere length predict poor survival and radiotherapy resistance in gliomas. Oncotarget. 2016;7(8):8712-8725.
  • 28. Li Z, Liu YH, Diao HY, Ma J, Yao YL. MiR-661 inhibits glioma cell proliferation, migration and invasion by targeting hTERT. Biochem Biophys Res Commun. 2015;468(4):870-876.
  • 29. Wang YY, Sun G, Luo H, Wang XF, Lan FM, Yue X, et al. MiR-21 modulates hTERT through a STAT3- dependent manner on glioblastoma cell growth. CNS Neurosci Ther. 2012;18(9):722-728.
  • 30. Hrdličková R, Nehyba J, Bargmann W, Bose HR Jr. Multiple tumor suppressor microRNAs regulate telomerase and TCF7, an important transcriptional regulator of the Wnt pathway. PLoS One. 2014;9(2):e86990.
  • 31. Hatanpaa KJ, Burma S, Zhao D, Habib AA. Epidermal growth factor receptor in glioma: signal transduction, neuropathology, imaging, and radioresistance. Neoplasia. 2010;12(9):675-684.
  • 32. Zhao K, Wang Q, Wang Y, Huang K, Yang C, Li Y, et al. EGFR/c-myc axis regulates TGFβ/Hippo/Notch pathway via epigenetic silencing miR-524 in gliomas. Cancer Lett. 2017;406:12-21.
  • 33. Kefas B, Godlewski J, Comeau L, Li Y, Abounader R, Hawkinson M, et al. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res. 2008;68(10):3566- 3572.
  • 34. Liu Z, Jiang Z, Huang J, Huang S, Li Y, Yu S, et al. miR-7 inhibits glioblastoma growth by simultaneously interfering with the PI3K/ATK and Raf/MEK/ERK pathways. Int J Oncol. 2014;44(5):1571-1580.
  • 35. Liu YY, Chen MB, Cheng L, Zhang ZQ, Yu ZQ, Jiang Q, et al. microRNA-200a downregulation in human glioma leads to Gαi1 over-expression, Akt activation, and cell proliferation. Oncogene. 2018;37(21):2890-2902.
  • 36. Nikolova E, Laleva L, Milev M, Spiriev T, Stoyanov S, Ferdinandov D, et al. miRNAs and related genetic biomarkers according to the WHO glioma classification: From diagnosis to future therapeutic targets. Noncoding RNA Res. 2023;9(1):141-152. 37. Wolter M, Werner T, Malzkorn B, Reifenberger G. Role of microRNAs Located on Chromosome Arm 10q in Malignant Gliomas. Brain Pathol. 2016;26(3):344-358. 38. Huse JT, Brennan C, Hambardzumyan D, Wee B, Pena J, Rouhanifard SH, et al. The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev. 2009;23(11):1327- 1337.
  • 39. Jiang L, Mao P, Song L, Wu J, Huang J, Lin C, et al. miR-182 as a prognostic marker for glioma progression and patient survival. Am J Pathol. 2010;177(1):29-38.
  • 40. Schneider B, William D, Lamp N, Zimpfer A, Henker C, Classen CF, et al. The miR-183/96/182 cluster is upregulated in glioblastoma carrying EGFR amplification. Mol Cell Biochem. 2022;477(9):2297-2307.
  • 41. Angom RS, Nakka NMR, Bhattacharya S. Advances in Glioblastoma Therapy: An Update on Current Approaches. Brain Sci. 2023;13(11):1536.
  • 42. Ge X, Pan MH, Wang L, Li W, Jiang C, He J, et al.. Hypoxia-mediated mitochondria apoptosis inhibition induces temozolomide treatment resistance through miR-26a/Bad/Bax axis. Cell Death Dis. 2018;9(11):1128.
  • 43. Wang C, Kang L, Wang X, Liu Y, Zhao X. Expression of miR-200a and chemotherapeutic treatment efficacy of glioma. Oncol Lett. 2018;15(4):5767-5771.
  • 44. Kouri FM, Ritner C, Stegh AH. miRNA-182 and the regulation of the glioblastoma phenotype - toward miRNA- based precision therapeutics. Cell Cycle. 2015;14(24):3794-800.
  • 45. Bhere D, Tamura K, Wakimoto H, Choi SH, Purow B, Debatisse J, et al. microRNA-7 upregulates death receptor 5 and primes resistant brain tumors to caspase-mediated apoptosis. Neuro Oncol. 2018;20(2):215-224.
  • 46. Mahinfar P, Mansoori B, Rostamzadeh D, Baradaran B, Cho WC, Mansoori B. The Role of microRNAs in Multidrug Resistance of Glioblastoma. Cancers (Basel). 2022;14(13):3217.
  • 47. Li Y, Xu J, Zhang J, Zhang J, Zhang J, Lu X. MicroRNA-346 inhibits the growth of glioma by directly targeting NFIB. Cancer Cell Int. 2019;19:294.

Delineating the Biomarker Potential and Therapeutic Significance of MicroRNAs in IDH-wildtype Glioblastoma as Defined by the WHO CNS5 Criteria

Yıl 2024, , 1 - 13, 04.06.2024
https://doi.org/10.48124/husagbilder.1481938

Öz

The World Health Organization (WHO) CNS5 classification, updated in 2021, has brought about a significant transformation in the diagnosis and treatment of IDH-wildtype glioblastoma, a subgroup of aggressive brain tumors. This new system, which incorporates molecular markers alongside traditional tissue analysis, provides a more refined approach that facilitates the identification of distinct glioblastoma subtypes with unique genetic profiles. Examples of these subtypes include IDH-mutant astrocytoma, IDH-mutant and 1p/19q-deleted oligodendroglioma, and IDH-wildtype glioblastoma. Despite advancements in genetics and targeted therapies, the treatment of these malignant tumors remains an ongoing quest. Therefore, the need for more specific diagnostic and therapeutic approaches is undeniable. MicroRNAs (miRNAs) are emerging as molecules that molecular biology has brought to the medical world in this context. These tiny molecules act as master regulators of gene expression and hold immense potential for glioblastoma diagnosis, prognosis prediction, and biomarker development. Recent research has highlighted the potential of miRNAs as therapeutic strategies, attracting scientific interest to this point. This review examines the current relationships of miRNAs in the context of IDH-wildtype glioblastoma within the framework of the WHO CNS5 classification. Utilizing extensive databases, this article investigates the intricate relationship between genetic abnormalities defined in the latest WHO classification and dysregulated miRNAs. By analyzing proposed molecular biomarkers and associated miRNA dysregulation, we aim to pave the way for the development of personalized miRNA-based therapies for this aggressive cancer type.

Kaynakça

  • 1. Yalamarty SSK, Filipczak N, Li X, Subhan MA, Parveen F, Ataide JA, et al. Mechanisms of Resistance and Current Treatment Options for Glioblastoma Multiforme (GBM). Cancers. 2023; 15(7):2116.
  • 2. Torp SH, Solheim O, Skjulsvik AJ. The WHO 2021 Classification of Central Nervous System tumours: a practical update on what neurosurgeons need to know-a minireview. Acta Neurochir (Wien). 2022;164(9):2453-2464.
  • 3. Mattei V, Santilli F, Martellucci S, Delle Monache S, Fabrizi J, Colapietro A, et al. The Importance of Tumor Stem Cells in Glioblastoma Resistance to Therapy. Int J Mol Sci. 2021;22(8):3863.
  • 4. Ali H, Harting R, de Vries R, Ali M, Wurdinger T, Best MG. Blood-Based Biomarkers for Glioma in the Context of Gliomagenesis: A Systematic Review. Front Oncol. 2021;11:665235.
  • 5. Karakaş N, Topcu O, Tüzün E, Kahraman ÖT, Sabancı PA, Aras Y et al. Immunoreactivity against SLC3A2 in high grade gliomas displays positive correlation with glioblastoma patient survival: Potential target for glioma diagnosis and therapy. bioRxiv, 2023-01.
  • 6. Makowska M, Smolarz B, Romanowicz H. microRNAs (miRNAs) in Glioblastoma Multiforme (GBM)-Recent Literature Review. Int J Mol Sci. 2023;24(4):3521.
  • 7. Crespo I, Vital AL, Gonzalez-Tablas M, Patino Mdel C, Otero A, Lopes MC, et al. Molecular and Genomic Alterations in Glioblastoma Multiforme. Am J Pathol. 2015;185(7):1820-33.
  • 8. Hasan H, Afzal M, Castresana JS, Shahi MH. A Comprehensive Review of miRNAs and Their Epigenetic Effects in Glioblastoma. Cells. 2023;12(12):1578.
  • 9. Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, et al. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells. 2020;9(2):276. Published 2020 Jan 23.
  • 10. United States: National Cancer Institute [Internet]. 2024 May 2. Available from: https:// training.seer.cancer.gov/brain/tumors/abstract-code-stage/grading.html
  • 11. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK,, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131(6):803-820.
  • 12. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021;23(8):1231-1251.
  • 13. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54.
  • 14. Bayraktar E, Bayraktar R, Oztatlici H, Lopez-Berestein G, Amero P, Rodriguez-Aguayo C. Targeting miRNAs and Other Non-Coding RNAs as a Therapeutic Approach: An Update. Non-Coding RNA. 2023; 9(2):27.
  • 15. O'Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018;9:402.
  • 16. Wilczynska A, Bushell M. The complexity of miRNA-mediated repression. Cell Death Differ. 2015;22(1):22-33.
  • 17. Petri R, Malmevik J, Fasching L, Åkerblom M, Jakobsson J. miRNAs in brain development. Exp Cell Res. 2014;321(1):84-89.
  • 18. Otmani K, Rouas R, Lewalle P. OncomiRs as noncoding RNAs having functions in cancer: Their role in immune suppression and clinical implications. Front Immunol. 2022;13:913951. 16.
  • 19. Kumar MA, Baba SK, Sadida HQ, Marzooqi SA, Jerobin J, Altemani FH, et al. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther. 2024;9(1):27.
  • 20. Shea A, Harish V, Afzal Z, Chijioke J, Kedir H, Dusmatova S, et al. MicroRNAs in glioblastoma multiforme pathogenesis and therapeutics. Cancer Med. 2016;5(8):1917-1946.
  • 21. Billur D, Yilmaz SG, Yaltirik CK, Ozdogan S, Ture U, Isbir T. Serum miRNA-582-5p and miRNA-363 as Potential Non-Invasive Biomarkers for Glioblastoma Multiforme. Turk Neurosurg. 2022;32(5):854- 60.
  • 22. Fortunato O, Iorio MV. The Therapeutic Potential of MicroRNAs in Cancer: Illusion or Opportunity?. Pharmaceuticals (Basel). 2020;13(12):438.
  • 23. Ahmed SP, Castresana JS, Shahi MH. Glioblastoma and MiRNAs. Cancers (Basel). 2021;13(7):1581.
  • 24. Yuan X, Dai M, Xu D. TERT promoter mutations and GABP transcription factors in carcinogenesis: More foes than friends. Cancer Lett. 2020;493:1-9.
  • 25. Killela PJ, Pirozzi CJ, Healy P, Reitman ZJ, Lipp E, Rasheed BA, et al. Mutations in IDH1, IDH2, and in the TERT promoter define clinically distinct subgroups of adult malignant gliomas. Oncotarget. 2014;5(6):1515-1525.
  • 26. Arita H, Yamasaki K, Matsushita Y, Nakamura T, Shimokawa A, Takami H, et al. A combination of TERT promoter mutation and MGMT methylation status predicts clinically relevant subgroups of newly diagnosed glioblastomas. Acta Neuropathol Commun. 2016;4(1):79.
  • 27. Gao K, Li G, Qu Y, Wang M, Cui B, Ji M, et al. TERT promoter mutations and long telomere length predict poor survival and radiotherapy resistance in gliomas. Oncotarget. 2016;7(8):8712-8725.
  • 28. Li Z, Liu YH, Diao HY, Ma J, Yao YL. MiR-661 inhibits glioma cell proliferation, migration and invasion by targeting hTERT. Biochem Biophys Res Commun. 2015;468(4):870-876.
  • 29. Wang YY, Sun G, Luo H, Wang XF, Lan FM, Yue X, et al. MiR-21 modulates hTERT through a STAT3- dependent manner on glioblastoma cell growth. CNS Neurosci Ther. 2012;18(9):722-728.
  • 30. Hrdličková R, Nehyba J, Bargmann W, Bose HR Jr. Multiple tumor suppressor microRNAs regulate telomerase and TCF7, an important transcriptional regulator of the Wnt pathway. PLoS One. 2014;9(2):e86990.
  • 31. Hatanpaa KJ, Burma S, Zhao D, Habib AA. Epidermal growth factor receptor in glioma: signal transduction, neuropathology, imaging, and radioresistance. Neoplasia. 2010;12(9):675-684.
  • 32. Zhao K, Wang Q, Wang Y, Huang K, Yang C, Li Y, et al. EGFR/c-myc axis regulates TGFβ/Hippo/Notch pathway via epigenetic silencing miR-524 in gliomas. Cancer Lett. 2017;406:12-21.
  • 33. Kefas B, Godlewski J, Comeau L, Li Y, Abounader R, Hawkinson M, et al. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res. 2008;68(10):3566- 3572.
  • 34. Liu Z, Jiang Z, Huang J, Huang S, Li Y, Yu S, et al. miR-7 inhibits glioblastoma growth by simultaneously interfering with the PI3K/ATK and Raf/MEK/ERK pathways. Int J Oncol. 2014;44(5):1571-1580.
  • 35. Liu YY, Chen MB, Cheng L, Zhang ZQ, Yu ZQ, Jiang Q, et al. microRNA-200a downregulation in human glioma leads to Gαi1 over-expression, Akt activation, and cell proliferation. Oncogene. 2018;37(21):2890-2902.
  • 36. Nikolova E, Laleva L, Milev M, Spiriev T, Stoyanov S, Ferdinandov D, et al. miRNAs and related genetic biomarkers according to the WHO glioma classification: From diagnosis to future therapeutic targets. Noncoding RNA Res. 2023;9(1):141-152. 37. Wolter M, Werner T, Malzkorn B, Reifenberger G. Role of microRNAs Located on Chromosome Arm 10q in Malignant Gliomas. Brain Pathol. 2016;26(3):344-358. 38. Huse JT, Brennan C, Hambardzumyan D, Wee B, Pena J, Rouhanifard SH, et al. The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev. 2009;23(11):1327- 1337.
  • 39. Jiang L, Mao P, Song L, Wu J, Huang J, Lin C, et al. miR-182 as a prognostic marker for glioma progression and patient survival. Am J Pathol. 2010;177(1):29-38.
  • 40. Schneider B, William D, Lamp N, Zimpfer A, Henker C, Classen CF, et al. The miR-183/96/182 cluster is upregulated in glioblastoma carrying EGFR amplification. Mol Cell Biochem. 2022;477(9):2297-2307.
  • 41. Angom RS, Nakka NMR, Bhattacharya S. Advances in Glioblastoma Therapy: An Update on Current Approaches. Brain Sci. 2023;13(11):1536.
  • 42. Ge X, Pan MH, Wang L, Li W, Jiang C, He J, et al.. Hypoxia-mediated mitochondria apoptosis inhibition induces temozolomide treatment resistance through miR-26a/Bad/Bax axis. Cell Death Dis. 2018;9(11):1128.
  • 43. Wang C, Kang L, Wang X, Liu Y, Zhao X. Expression of miR-200a and chemotherapeutic treatment efficacy of glioma. Oncol Lett. 2018;15(4):5767-5771.
  • 44. Kouri FM, Ritner C, Stegh AH. miRNA-182 and the regulation of the glioblastoma phenotype - toward miRNA- based precision therapeutics. Cell Cycle. 2015;14(24):3794-800.
  • 45. Bhere D, Tamura K, Wakimoto H, Choi SH, Purow B, Debatisse J, et al. microRNA-7 upregulates death receptor 5 and primes resistant brain tumors to caspase-mediated apoptosis. Neuro Oncol. 2018;20(2):215-224.
  • 46. Mahinfar P, Mansoori B, Rostamzadeh D, Baradaran B, Cho WC, Mansoori B. The Role of microRNAs in Multidrug Resistance of Glioblastoma. Cancers (Basel). 2022;14(13):3217.
  • 47. Li Y, Xu J, Zhang J, Zhang J, Zhang J, Lu X. MicroRNA-346 inhibits the growth of glioma by directly targeting NFIB. Cancer Cell Int. 2019;19:294.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cerrahi Hastalıklar Hemşireliği, Sağlık Hizmetleri ve Sistemleri (Diğer)
Bölüm Makaleler
Yazarlar

Deryanaz Billur 0000-0002-6079-8224

Özlem Timirci Kahraman 0000-0002-2641-5613

Erken Görünüm Tarihi 3 Haziran 2024
Yayımlanma Tarihi 4 Haziran 2024
Gönderilme Tarihi 10 Mayıs 2024
Kabul Tarihi 23 Mayıs 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

Vancouver Billur D, Timirci Kahraman Ö. Delineating the Biomarker Potential and Therapeutic Significance of MicroRNAs in IDH-wildtype Glioblastoma as Defined by the WHO CNS5 Criteria. Haliç Üniversitesi Sağlık Bilimleri Dergisi. 2024;7(2):1-13.