Araştırma Makalesi
BibTex RIS Kaynak Göster

Kişiselleştirilmiş Haber Tavsiye Sistemi

Yıl 2023, , 123 - 133, 28.02.2023
https://doi.org/10.56809/icujtas.1193993

Öz

Öneri Sistemleri, kullanıcının daha önce yapmış olduğu tercihlere dayalı olarak, kullanıcının bir sonraki tercihlerini öngörülebilir bir şekilde öneren yöntemlerdir. Bu yöntem günümüzde daha da popüler hale gelmiştir ve eldeki verileri değerlendirerek geleceğe yönelik tahmin gerektiren herhangi bir konu veya alana uygulanabilir. Bir tür bilgi çıkarma çalışmasıdır. Ayrıca Amazon'un gelirinin yaklaşık %35'ini yönlendirme sistemlerinden elde etmesi bu yöntemin ne kadar önemli olduğunun bir göstergesidir. Ancak benzer bir uygulama alanı olan haber tavsiye sistemi de diğerleri kadar yaygın olarak kullanılmamaktadır. Bu çalışmada, kullanıcının girdiği siteler, aradığı kelimeler ve yer imleri dikkate alınarak bir haber öneri sistemi tasarlamak amaçlanmıştır. Haberleri kullanıcıya ilgili olarak sunabilmek için makine öğrenmesi modeli, haber kategorilerini ve haber içeriklerini içeren bir veri seti ile eğitilmiştir. Kullanıcı ortamından gelen veriler eğitilen modele verilerek, kullanıcının bulunan ilgili kategorileri RSS tarafından anlık olarak işlenir. RSS'den seçilen bu haberler, günlük haber gündemine göre öncelik sırasına göre kullanıcıya gösterilir. Gerçek kullanıcı testi %89 gibi etkileyici bir doğruluk gösterdi. Bu çözüm, sorunun doğası gereği içerik tabanlı bir öneri sistemi sunar.

Kaynakça

  • Beel J., Gipp B., Langer S., Breitinger C. Paper Recommender Systems: A Literature Survey. International Journal on Digital Libraries 2016; 17(4): 305-338.
  • Billsus D., Pazzani, M.J. A Hybrid User Model for News Story Classification. In: Kay, J. (eds) UM99 User Modeling. CISM International Centre for Mechanical Sciences 1999; 407:99-108 Springer, Vienna.
  • Çelik Ö., Koç B. C. Classification of Turkish News Texts with TF-IDF, Word2vec and Fasttext Vector Model Methods. DEÜ FMD. 2021;23(67):121-127
  • Çilingir I. 2019, Recommendation Systems, https://medium.com/@irmcilingir/%C3%B6neri-systems-recommendation-systems-28a3f341c0a9 (Access Date: 03.12.2021).
  • Deniz E., Öz V. K., Bozkurt Keser S., Okyay S. and Kartal Y. İçerik Tabanlı Bilimsel Yayın Öneri Sisteminde Benzerlik Ölçümlerinin İncelenmesi. DUMF Journal of Engineering 2021;12(2):221-228, doi:10.24012/dumf.838084
  • Dhruv A., Kamath A., Powar A., Gaikwad K. Artist Recommendation System Using Hybrid Method: A Novel Approach. In: Shetty N., Patnaik L., Nagaraj H., Hamsavath P., Nalini N. (eds) Emerging Research in Computing, Information, Communication and Applications. Advances in Intelligent Systems and Computing. 2019;(882). Springer, Singapore.
  • Dwivedi R. 2020, What Are Recommendation Systems in Machine Learning. https://www.analyticssteps.com/blogs/what-are-recommendation-systems-machine-learning, (Access Date: 03.12.2021).
  • Jonnalagedda N., Gauch S., Labille K., Alfarhood S. Incorporating Popularity in a Personalized News Recommender System. PeerJ Computer Science, 2016; 2: e63
  • Kaşıkçı T., Gökçen H. Determination of E-Commerce Sites with Text Mining.Journal of Information Technologies.2014;7(1). DOI: 10.12973/bid.2014
  • Kumas E. Comparison of Classifiers While Performing Sentiment Analysis from Turkish Twitter Data.Journal of ESTUDAM Information.2021;2(2):1-5.
  • Li, L., Wang, D., Li, T., Knox, D., Padmanabhan, B., Scene: a scalable twostage personalized news recommendation system, Proceedings of the 34th international ACM SIGIR conference on Resear. 2011;125–134
  • Liu, J., Dolan P., Pedersen E.R.: Personalized news recommendation based on click behavior. In: Proceedings of the 15th International Conference on Intelligent User Interfaces, IUI 2010;31–40. ACM, New York
  • Metin S.K., and Karaoğlan B. Collocation extraction in Turkish texts using statistical methods. International Conference on Natural Language Processing. Springer, Berlin, Heidelberg. 2010.
  • Nuri Yavuz, 2020, Python Beautiful Soup Module https://nuriyavuz2-71.medium.com/python-beautifulsoup-mod%C3%BCl%C3%BC-689ef499ee16, (Access Date: 01.12.2021)
  • Olson, D.L. and Delen, D., Advanced Data Mining Techniques, Springer Science & Business Media, Verlag Berlin Heidelberg, 2008.
  • Pypi.Browser History. https://pypi.org/project/browserhistory/, (Access Date: 01.12.2021)
  • Pypi.Feed Parser. https://pypi.org/project/feedparser/, (Access Date: 01.12.2021)
  • Saranya KG and Sudha G Sadhasivam. Article: A Personalized Online News Recommendation System. International Journal of Computer Applications. 2012;57(18):6-14.
  • Seven S., Alpkoçak A. Kişisel Haber Öneri Sistemi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi. 2020; 22(64): 301-307.
  • Tan A. H., Teo C. Learning user profiles for personalized information dissemination, Neural Networks Proceedings. IEEE World Congress on Computational Intelligence. 1998;1:183-188.
  • Taşçı S, Content Based Media Monitoring and News Recommendation System. Master Thesis. Hacettepe University, Computer Engineering, Ankara, 2015
  • Uslu O. and Özmen Akyol S., Türkçe Haber Metinlerinin Makine Öğrenmesi Yöntemleri Kullanılarak Sınıflandırılması, Eskişehir Türk Dünyası Uygulama ve Araştırma Merkezi Bilişim Dergisi, 2021;2(1): 15-20.
  • Yildirim S., 2017, Text Categorization for Turkish-Multi NB, https://www.kaggle.com/savasy/text-categorization-for-turkish-multi-nb, (Access Date: 01.11.2021).

Personalized News Recommendation System

Yıl 2023, , 123 - 133, 28.02.2023
https://doi.org/10.56809/icujtas.1193993

Öz

Recommendation Systems are the methods that suggest the next choices of the user in a predictable way, based on the preferences made by the user before. This method is become even more popular nowadays and it can be applied to any topic or field that needs future estimation evaluating the data at hand. It is a kind of information extraction study. Furthermore, the fact that Amazon receives about 35% of its revenue from referral systems is an indication of how important this method is. However, news recommendation system which is a similar application area, is not also widely used as others. In this study, it is aimed to design a news recommendation system by taking into account the sites the user enters, the words that they searched for and bookmarks. The machine learning model has been trained with a data set that includes news categories and news content in order to present the news to the user as interested. By giving the data from the user environment to the trained model, the found interested categories of the user is processed instantly by the RSS. These news selected from RSS are shown to the user in order of priority regarding the daily news agenda. The real user test showed impressive accuracy as 89%. This solution presents a content-based recommendation system as nature of the problem.

Kaynakça

  • Beel J., Gipp B., Langer S., Breitinger C. Paper Recommender Systems: A Literature Survey. International Journal on Digital Libraries 2016; 17(4): 305-338.
  • Billsus D., Pazzani, M.J. A Hybrid User Model for News Story Classification. In: Kay, J. (eds) UM99 User Modeling. CISM International Centre for Mechanical Sciences 1999; 407:99-108 Springer, Vienna.
  • Çelik Ö., Koç B. C. Classification of Turkish News Texts with TF-IDF, Word2vec and Fasttext Vector Model Methods. DEÜ FMD. 2021;23(67):121-127
  • Çilingir I. 2019, Recommendation Systems, https://medium.com/@irmcilingir/%C3%B6neri-systems-recommendation-systems-28a3f341c0a9 (Access Date: 03.12.2021).
  • Deniz E., Öz V. K., Bozkurt Keser S., Okyay S. and Kartal Y. İçerik Tabanlı Bilimsel Yayın Öneri Sisteminde Benzerlik Ölçümlerinin İncelenmesi. DUMF Journal of Engineering 2021;12(2):221-228, doi:10.24012/dumf.838084
  • Dhruv A., Kamath A., Powar A., Gaikwad K. Artist Recommendation System Using Hybrid Method: A Novel Approach. In: Shetty N., Patnaik L., Nagaraj H., Hamsavath P., Nalini N. (eds) Emerging Research in Computing, Information, Communication and Applications. Advances in Intelligent Systems and Computing. 2019;(882). Springer, Singapore.
  • Dwivedi R. 2020, What Are Recommendation Systems in Machine Learning. https://www.analyticssteps.com/blogs/what-are-recommendation-systems-machine-learning, (Access Date: 03.12.2021).
  • Jonnalagedda N., Gauch S., Labille K., Alfarhood S. Incorporating Popularity in a Personalized News Recommender System. PeerJ Computer Science, 2016; 2: e63
  • Kaşıkçı T., Gökçen H. Determination of E-Commerce Sites with Text Mining.Journal of Information Technologies.2014;7(1). DOI: 10.12973/bid.2014
  • Kumas E. Comparison of Classifiers While Performing Sentiment Analysis from Turkish Twitter Data.Journal of ESTUDAM Information.2021;2(2):1-5.
  • Li, L., Wang, D., Li, T., Knox, D., Padmanabhan, B., Scene: a scalable twostage personalized news recommendation system, Proceedings of the 34th international ACM SIGIR conference on Resear. 2011;125–134
  • Liu, J., Dolan P., Pedersen E.R.: Personalized news recommendation based on click behavior. In: Proceedings of the 15th International Conference on Intelligent User Interfaces, IUI 2010;31–40. ACM, New York
  • Metin S.K., and Karaoğlan B. Collocation extraction in Turkish texts using statistical methods. International Conference on Natural Language Processing. Springer, Berlin, Heidelberg. 2010.
  • Nuri Yavuz, 2020, Python Beautiful Soup Module https://nuriyavuz2-71.medium.com/python-beautifulsoup-mod%C3%BCl%C3%BC-689ef499ee16, (Access Date: 01.12.2021)
  • Olson, D.L. and Delen, D., Advanced Data Mining Techniques, Springer Science & Business Media, Verlag Berlin Heidelberg, 2008.
  • Pypi.Browser History. https://pypi.org/project/browserhistory/, (Access Date: 01.12.2021)
  • Pypi.Feed Parser. https://pypi.org/project/feedparser/, (Access Date: 01.12.2021)
  • Saranya KG and Sudha G Sadhasivam. Article: A Personalized Online News Recommendation System. International Journal of Computer Applications. 2012;57(18):6-14.
  • Seven S., Alpkoçak A. Kişisel Haber Öneri Sistemi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi. 2020; 22(64): 301-307.
  • Tan A. H., Teo C. Learning user profiles for personalized information dissemination, Neural Networks Proceedings. IEEE World Congress on Computational Intelligence. 1998;1:183-188.
  • Taşçı S, Content Based Media Monitoring and News Recommendation System. Master Thesis. Hacettepe University, Computer Engineering, Ankara, 2015
  • Uslu O. and Özmen Akyol S., Türkçe Haber Metinlerinin Makine Öğrenmesi Yöntemleri Kullanılarak Sınıflandırılması, Eskişehir Türk Dünyası Uygulama ve Araştırma Merkezi Bilişim Dergisi, 2021;2(1): 15-20.
  • Yildirim S., 2017, Text Categorization for Turkish-Multi NB, https://www.kaggle.com/savasy/text-categorization-for-turkish-multi-nb, (Access Date: 01.11.2021).
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bilgisayar Yazılımı
Bölüm Research Article
Yazarlar

Melis Özkara 0000-0001-9655-2886

Metin Turan 0000-0002-1941-6693

Yayımlanma Tarihi 28 Şubat 2023
Gönderilme Tarihi 24 Ekim 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Özkara, M., & Turan, M. (2023). Personalized News Recommendation System. İstanbul Ticaret Üniversitesi Teknoloji Ve Uygulamalı Bilimler Dergisi, 5(2), 123-133. https://doi.org/10.56809/icujtas.1193993