Araştırma Makalesi
BibTex RIS Kaynak Göster

SÜRDÜRÜLEBİLİR MODADA BİYOPLASTİK YÜZEYLERİN KULLANIM POTANSİYELİ

Yıl 2025, Cilt: 3 Sayı: 2, 73 - 87, 28.12.2025

Öz

Günümüzde moda endüstrisi, çevresel sorunların ve hızlı üretim-tüketim döngüsünün etkisiyle sürdürülebilir malzeme kullanımını öncelikli hale getirmektedir. Doğada çözünmeyen sentetik plastiklerin yerine, yenilenebilir kaynaklardan üretilen biyobozunur malzemeler giderek daha fazla tercih edilmektedir. Bu bağlamda, nişasta bazlı biyoplastikler, sürdürülebilir moda alanında hem ekolojik hem de estetik açıdan alternatif bir yüzey malzemesi olarak öne çıkmaktadır. Nişasta, gliserin, sirke ve su gibi doğal bileşenlerle hazırlanan biyoplastik yüzeyler, üretim sürecinde çevre dostu bir yaklaşım sunarken, estetik olarak da farklı tasarım olanakları sağlamaktadır. Doğal pigmentlerle renklendirilebilen bu malzemeler, çeşitli yüzey dokuları ve görsel efektler yaratma potansiyeline sahiptir. Moda tasarımında biyoplastik kullanımı, yalnızca ekolojik bir tercih olmanın ötesinde, kalıcılık yerine dönüşümü merkeze alan yeni bir estetik anlayışı temsil etmektedir. Bu çalışma, sürdürülebilir modada nişasta bazlı biyoplastik yüzeylerin kullanım potansiyelini, malzemenin çevresel avantajları, estetik nitelikleri ve deneysel tasarım olanakları üzerinden değerlendirmektedir. Biyoplastik yüzeyler, doğa ile uyumlu üretim süreçlerini destekleyen ve (dönüşümü)geçiciliği estetik bir değer olarak öne çıkaran yenilikçi bir malzeme yaklaşımı olarak moda tasarımına katkı sağlamaktadır.

Kaynakça

  • Amin, M., Chowdhury, M., & Kowser, M. (2019). Characterization and performance analysis of composite bioplastics synthesized using titanium dioxide nanoparticles with corn starch. Heliyon, 5. https://doi.org/10.1016/j.heliyon.2019.e02009
  • Aygün, M. (2025). Doğadan Sanata: Anadolu Bahçesinden İlham Alan Tasarımlar. STAR Sanat ve Tasarım Araştırmaları Dergisi, 6(10), 140-164.
  • Bailey, K., Basu, A., & Sharma, S. (2022). The environmental impacts of fast fashion on water quality: a systematic review. Water, 14(7), 1073. https://doi.org/10.3390/w14071073
  • Centobelli, P., Abbate, S., Nadeem, S., & Garza‐Reyes, J. (2022). Slowing the fast fashion industry: an all-round perspective. Current Opinion in Green and Sustainable Chemistry. https://doi.org/10.1016/j.cogsc.2022.100684.
  • Chauhan, K., Kaur, R., & Chauhan, I. (2024). Sustainable bioplastic: A comprehensive review on sources, methods, advantages, and applications of bioplastics. Polymer-Plastics Technology and Materials, 63, 913–938. https://doi.org/10.1080/25740881.2024.2307369
  • Coppola, G., Gaudio, M., Lopresto, C., Calabrò, V., Curcio, S., & Chakraborty, S. (2021). Bioplastic from renewable biomass: A facile solution for a greener environment. Earth Systems and Environment, 5, 231–251. https://doi.org/10.1007/s41748-021-00208-7
  • Daramola, O., Ajayi, T., & Ayodele, T. (2025). Advancing sustainability in Nigerian architecture: A systematic review of sustainable materials, circular economy, and low-carbon solutions. International Journal of Research and Innovation in Applied Science, 10(3), 28–45. https://doi.org/10.51584/ijrias.2025.10030028
  • Fitch-Vargas, P., Camacho-Hernández, I., Rodríguez‐González, F., Martínez-Bustos, F., Calderón-Castro, A., Zazueta‐Morales, J., & Aguilar-Palazuelos, E. (2023). Effect of compounding and plastic processing methods on the development of bioplastics based on acetylated starch reinforced with sugarcane bagasse cellulose fibers. Industrial Crops and Products. https://doi.org/10.1016/j.indcrop.2022.116084
  • Humayun, S., & M, B. (2025). Assessing the Impact of Cheap and Fast Fashion Industry on Society, Environment and Sustainability: What is the True Cost?. Habitus Toplumbilim Dergisi. https://doi.org/10.62156/habitus.1610275.
  • Jayarathna, S., Andersson, M., & Andersson, R. (2022). Recent advances in starch-based blends and composites for bioplastics applications. Polymers, 14. https://doi.org/10.3390/polym14214557
  • Kanat, Z. E. (2023). Biyomimetik Tasarım Ve Giysi Konforu Uygulamaları. IDEART Uluslararası Tasarım ve Sanat Dergisi, 1(1), 24-35.
  • Kim, Y., & Suh, S. (2022). The core value of sustainable fashion: A case study on “Market Gredit”. Sustainability, 14(21), 14423. https://doi.org/10.3390/su142114423
  • Meriç, D. (2019). Sürdürülebilir Yaklaşımlara Bir Örnek Olarak Biyoesaslı Malzemelerin Tekstil Ve Moda Tasarımı Alanlarında Kullanımı. Uşak Üniversitesi Sosyal Bilimler Dergisi, 12(2), 111-121.
  • Moreno, M., Ríos, C., Rowe, Z., & Charnley, F. (2016). A conceptual framework for circular design. Sustainability, 8(9), 937. https://doi.org/10.3390/su8090937
  • Negrete-Bolagay, D., & Guerrero, V. (2024). Opportunities and challenges in the application of bioplastics: Perspectives from formulation, processing, and performance. Polymers, 16. https://doi.org/10.3390/polym16182561
  • Nilimaa, J. (2023). Smart materials and technologies for sustainable concrete construction. Developments in the Built Environment, 15, 100177. https://doi.org/10.1016/j.dibe.2023.100177
  • Öztürk, T., & Eroglu, N. S. (2025). Tekstil ve Moda Tasarımında Kullanılan Biyomateryallere Örnek Bir Uygulama. Tekstil ve Mühendis, 32(138), 177-191. https://doi.org/10.7216/teksmuh.1436403
  • Popescu, C., Dissanayake, H., Mansi, E., & Stancu, A. (2024). Eco breakthroughs: Sustainable materials transforming the future of our planet. Sustainability, 16(23), 10790. https://doi.org/10.3390/su162310790
  • Rognoli, V., Salvia, G., & Levi, M. (2011, June). The aesthetic of interaction with materials for design: the bioplastics' identity. In Proceedings of the 2011 Conference on Designing Pleasurable Products and Interfaces (pp. 1-8). https://doi.org/10.1145/2347504.2347540
  • Rosenboom, J., Langer, R., & Traverso, G. (2022). Bioplastics for a circular economy. Nature Reviews Materials, 7, 117–137. https://doi.org/10.1038/s41578-021-00407-8
  • Saeed, S., Arshad, M., & Ahmed, A. (2023). Advancing circular economy in industrial chemistry and environmental engineering: Principles, alignment with United Nations sustainable development goals, and pathways to implementation. European Journal of Chemistry, 14(3), 414–428. https://doi.org/10.5155/eurjchem.14.3.414-428.2452
  • Sawant, J., Guru, R., Grewal, D., Talekar, S., & Kulkarni, S. (2024). Sustainability ın Textiles: A Critical Review of Eco – Friendly Practices and Materials. ShodhKosh: Journal of Visual and Performing Arts. https://doi.org/10.29121/shodhkosh.v5.i2.2024.891.
  • Shafqat, A., Al-Zaqri, N., Tahir, A., & Alsalme, A. (2020). Synthesis and characterization of starch-based bioplastics using varying plant-based ingredients, plasticizers and natural fillers. Saudi Journal of Biological Sciences, 28(4), 1739–1749. https://doi.org/10.1016/j.sjbs.2020.12.015
  • Tan, S., Andriyana, A., Ong, H., Lim, S., Pang, Y., & Ngoh, G. (2022). A comprehensive review on the emerging roles of nanofillers and plasticizers towards sustainable starch-based bioplastic fabrication. Polymers, 14. https://doi.org/10.3390/polym14040664
  • Timm, J., Maciel, V., & Passuello, A. (2023). Towards sustainable construction: A systematic review of circular economy strategies and ecodesign in the built environment. Buildings, 13(8), 2059. https://doi.org/10.3390/buildings13082059
  • Woodside, A., & Fine, M. (2019). Sustainable fashion themes in luxury brand storytelling: The sustainability fashion research grid. Journal of Global Fashion Marketing, 10, 111 - 128. https://doi.org/10.1080/20932685.2019.1573699.
  • Xie, D., Zhang, R., Zhang, C., Yang, S., Xu, Z., & Song, Y. (2023). A novel, robust mechanical strength, and naturally degradable double crosslinking starch-based bioplastics for practical applications. International Journal of Biological Macromolecules, 253, 126959. https://doi.org/10.1016/j.ijbiomac.2023.126959
  • Yang, J., Dong, X., Wang, J., Ching, Y. C., Liu, J., Baikeli, Y., ... & Xu, S. (2022). Synthesis and properties of bioplastics from corn starch and citric acid-epoxidized soybean oil oligomers. Journal of Materials Research and Technology, 20, 373-380. https://doi.org/10.1016/j.jmrt.2022.07.119
  • Zhao, X., Wang, Y., Chen, X., Yu, X., Li, W., Zhang, S., ... & Zhu, H. (2023). Sustainable bioplastics derived from renewable natural resources for food packaging. Matter, 6(1), 97-127. https://doi.org/10.1016/j.matt.2022.11.006

THE POTENTIAL OF BIOPLASTIC SURFACES FOR USE IN SUSTAINABLE FASHION

Yıl 2025, Cilt: 3 Sayı: 2, 73 - 87, 28.12.2025

Öz

Today, the fashion industry is increasingly adopting sustainable approaches in response to environmental challenges and the fast-paced production-consumption cycle. Biodegradable materials derived from renewable sources are becoming essential alternatives to non-degradable synthetic plastics. In this context, starch-based bioplastics stand out as surface materials that offer both ecological and aesthetic value in sustainable fashion. Starch, glycerin, vinegar, and water are combined to create bioplastic surfaces that provide environmentally friendly production processes while offering diverse design possibilities. Colored with natural pigments, these materials can produce varied textures and visual effects. The use of bioplastics in fashion design represents not only an ecological choice but also a new aesthetic approach that prioritizes transformation over permanence. This study examines the potential of starch-based bioplastic surfaces in sustainable fashion by evaluating their environmental benefits, aesthetic qualities, and experimental design possibilities. Bioplastic surfaces emerge as an innovative material approach that supports nature-oriented production practices while highlighting temporality and transformation as aesthetic values in fashion design.

Kaynakça

  • Amin, M., Chowdhury, M., & Kowser, M. (2019). Characterization and performance analysis of composite bioplastics synthesized using titanium dioxide nanoparticles with corn starch. Heliyon, 5. https://doi.org/10.1016/j.heliyon.2019.e02009
  • Aygün, M. (2025). Doğadan Sanata: Anadolu Bahçesinden İlham Alan Tasarımlar. STAR Sanat ve Tasarım Araştırmaları Dergisi, 6(10), 140-164.
  • Bailey, K., Basu, A., & Sharma, S. (2022). The environmental impacts of fast fashion on water quality: a systematic review. Water, 14(7), 1073. https://doi.org/10.3390/w14071073
  • Centobelli, P., Abbate, S., Nadeem, S., & Garza‐Reyes, J. (2022). Slowing the fast fashion industry: an all-round perspective. Current Opinion in Green and Sustainable Chemistry. https://doi.org/10.1016/j.cogsc.2022.100684.
  • Chauhan, K., Kaur, R., & Chauhan, I. (2024). Sustainable bioplastic: A comprehensive review on sources, methods, advantages, and applications of bioplastics. Polymer-Plastics Technology and Materials, 63, 913–938. https://doi.org/10.1080/25740881.2024.2307369
  • Coppola, G., Gaudio, M., Lopresto, C., Calabrò, V., Curcio, S., & Chakraborty, S. (2021). Bioplastic from renewable biomass: A facile solution for a greener environment. Earth Systems and Environment, 5, 231–251. https://doi.org/10.1007/s41748-021-00208-7
  • Daramola, O., Ajayi, T., & Ayodele, T. (2025). Advancing sustainability in Nigerian architecture: A systematic review of sustainable materials, circular economy, and low-carbon solutions. International Journal of Research and Innovation in Applied Science, 10(3), 28–45. https://doi.org/10.51584/ijrias.2025.10030028
  • Fitch-Vargas, P., Camacho-Hernández, I., Rodríguez‐González, F., Martínez-Bustos, F., Calderón-Castro, A., Zazueta‐Morales, J., & Aguilar-Palazuelos, E. (2023). Effect of compounding and plastic processing methods on the development of bioplastics based on acetylated starch reinforced with sugarcane bagasse cellulose fibers. Industrial Crops and Products. https://doi.org/10.1016/j.indcrop.2022.116084
  • Humayun, S., & M, B. (2025). Assessing the Impact of Cheap and Fast Fashion Industry on Society, Environment and Sustainability: What is the True Cost?. Habitus Toplumbilim Dergisi. https://doi.org/10.62156/habitus.1610275.
  • Jayarathna, S., Andersson, M., & Andersson, R. (2022). Recent advances in starch-based blends and composites for bioplastics applications. Polymers, 14. https://doi.org/10.3390/polym14214557
  • Kanat, Z. E. (2023). Biyomimetik Tasarım Ve Giysi Konforu Uygulamaları. IDEART Uluslararası Tasarım ve Sanat Dergisi, 1(1), 24-35.
  • Kim, Y., & Suh, S. (2022). The core value of sustainable fashion: A case study on “Market Gredit”. Sustainability, 14(21), 14423. https://doi.org/10.3390/su142114423
  • Meriç, D. (2019). Sürdürülebilir Yaklaşımlara Bir Örnek Olarak Biyoesaslı Malzemelerin Tekstil Ve Moda Tasarımı Alanlarında Kullanımı. Uşak Üniversitesi Sosyal Bilimler Dergisi, 12(2), 111-121.
  • Moreno, M., Ríos, C., Rowe, Z., & Charnley, F. (2016). A conceptual framework for circular design. Sustainability, 8(9), 937. https://doi.org/10.3390/su8090937
  • Negrete-Bolagay, D., & Guerrero, V. (2024). Opportunities and challenges in the application of bioplastics: Perspectives from formulation, processing, and performance. Polymers, 16. https://doi.org/10.3390/polym16182561
  • Nilimaa, J. (2023). Smart materials and technologies for sustainable concrete construction. Developments in the Built Environment, 15, 100177. https://doi.org/10.1016/j.dibe.2023.100177
  • Öztürk, T., & Eroglu, N. S. (2025). Tekstil ve Moda Tasarımında Kullanılan Biyomateryallere Örnek Bir Uygulama. Tekstil ve Mühendis, 32(138), 177-191. https://doi.org/10.7216/teksmuh.1436403
  • Popescu, C., Dissanayake, H., Mansi, E., & Stancu, A. (2024). Eco breakthroughs: Sustainable materials transforming the future of our planet. Sustainability, 16(23), 10790. https://doi.org/10.3390/su162310790
  • Rognoli, V., Salvia, G., & Levi, M. (2011, June). The aesthetic of interaction with materials for design: the bioplastics' identity. In Proceedings of the 2011 Conference on Designing Pleasurable Products and Interfaces (pp. 1-8). https://doi.org/10.1145/2347504.2347540
  • Rosenboom, J., Langer, R., & Traverso, G. (2022). Bioplastics for a circular economy. Nature Reviews Materials, 7, 117–137. https://doi.org/10.1038/s41578-021-00407-8
  • Saeed, S., Arshad, M., & Ahmed, A. (2023). Advancing circular economy in industrial chemistry and environmental engineering: Principles, alignment with United Nations sustainable development goals, and pathways to implementation. European Journal of Chemistry, 14(3), 414–428. https://doi.org/10.5155/eurjchem.14.3.414-428.2452
  • Sawant, J., Guru, R., Grewal, D., Talekar, S., & Kulkarni, S. (2024). Sustainability ın Textiles: A Critical Review of Eco – Friendly Practices and Materials. ShodhKosh: Journal of Visual and Performing Arts. https://doi.org/10.29121/shodhkosh.v5.i2.2024.891.
  • Shafqat, A., Al-Zaqri, N., Tahir, A., & Alsalme, A. (2020). Synthesis and characterization of starch-based bioplastics using varying plant-based ingredients, plasticizers and natural fillers. Saudi Journal of Biological Sciences, 28(4), 1739–1749. https://doi.org/10.1016/j.sjbs.2020.12.015
  • Tan, S., Andriyana, A., Ong, H., Lim, S., Pang, Y., & Ngoh, G. (2022). A comprehensive review on the emerging roles of nanofillers and plasticizers towards sustainable starch-based bioplastic fabrication. Polymers, 14. https://doi.org/10.3390/polym14040664
  • Timm, J., Maciel, V., & Passuello, A. (2023). Towards sustainable construction: A systematic review of circular economy strategies and ecodesign in the built environment. Buildings, 13(8), 2059. https://doi.org/10.3390/buildings13082059
  • Woodside, A., & Fine, M. (2019). Sustainable fashion themes in luxury brand storytelling: The sustainability fashion research grid. Journal of Global Fashion Marketing, 10, 111 - 128. https://doi.org/10.1080/20932685.2019.1573699.
  • Xie, D., Zhang, R., Zhang, C., Yang, S., Xu, Z., & Song, Y. (2023). A novel, robust mechanical strength, and naturally degradable double crosslinking starch-based bioplastics for practical applications. International Journal of Biological Macromolecules, 253, 126959. https://doi.org/10.1016/j.ijbiomac.2023.126959
  • Yang, J., Dong, X., Wang, J., Ching, Y. C., Liu, J., Baikeli, Y., ... & Xu, S. (2022). Synthesis and properties of bioplastics from corn starch and citric acid-epoxidized soybean oil oligomers. Journal of Materials Research and Technology, 20, 373-380. https://doi.org/10.1016/j.jmrt.2022.07.119
  • Zhao, X., Wang, Y., Chen, X., Yu, X., Li, W., Zhang, S., ... & Zhu, H. (2023). Sustainable bioplastics derived from renewable natural resources for food packaging. Matter, 6(1), 97-127. https://doi.org/10.1016/j.matt.2022.11.006
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Tekstil ve Moda Tasarımı
Bölüm Araştırma Makalesi
Yazarlar

Hülya Arabacı

Kenan Saatçioğlu

Gönderilme Tarihi 23 Ekim 2025
Kabul Tarihi 22 Aralık 2025
Yayımlanma Tarihi 28 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 3 Sayı: 2

Kaynak Göster

APA Arabacı, H., & Saatçioğlu, K. (2025). SÜRDÜRÜLEBİLİR MODADA BİYOPLASTİK YÜZEYLERİN KULLANIM POTANSİYELİ. IDEART Uluslararası Tasarım ve Sanat Dergisi, 3(2), 73-87.