Derleme
BibTex RIS Kaynak Göster

LABORATUVAR HAYVANLARINDA DENEYSEL EPİLEPSİ MODELLERİ

Yıl 2020, Cilt: 3 Sayı: 1, 38 - 51, 31.05.2020

Öz

Epilepsi; merkezi sinir sisteminin bir kısmının veya tümünün anormal deşarjlar ile nöbetlere yol açan hastalığıdır. Dünya genelinde yaklaşık 70 milyon epilepsi hastası vardır. Hastalık ile mücadelede her geçen gün yeni ilaçlar geliştirilmektedir. Bu nedenle ilaçların insanlarda kullanılmadan önce deneysel hayvan modelleri kullanılarak analiz edilmesi gerekmektedir. Bu derlemede gelişim potansiyeli olan epilepsi ilaçlarının etkinliğinin araştırıldığı laboratuvar hayvanlarında deneysel epilepsi modelleri
incelenmiştir.

Kaynakça

  • Ari, Y.B., Lagowska, Y., Salle, S.G., Tremblay, E., Ottersen, O.P., Naquet, R. (1978). Diazepam pretreatment reduces distant hippocampal damage induced byintra-amygdaloid injections of kainic acid. Eur J Pharmacol, 52: 419–420. https://doi.org/10.1016/0014-2999(78)90302-3.
  • Bağırıcı, F., Bostancı, M. (2001). Kalsiyum kanal blokerleri ve deneysel epilepsi. OMÜ Tıp Dergisi, 18: 135-149.
  • Bloomer, H.A., Barton, L.J., Maddock, J.R. (1967). Penicillin-induced encephalography in uremic patients, J Am Med Assoc, 200: 121-123. https://doi.org/10.1001/jama.1967.03120150077011.
  • Bo, G.P., Fonzari, M., Scotto, P.A., Benassi, E. (1984). Parenteral penicillin epilepsy: tolerance to subsequent treatments. Exp Neurol, 85: 229-232. https://doi.org/10.1016/0014-4886(84)90177-8.
  • Brailowsky, S., Menini, C., Barrat, C.S., Naquet,R. (1987). Epileptogenic gammaaminobutyric acid-withdrawal syndrome after chronic, intracortical infusion in baboons. Neurosci Lett, 74: 75-80 https://doi.org/10.1111/ane.12671.
  • Branco, C.M.M., Alves, G.L., Figueiredo, I.V., Falcao, A.C., Caramona, M.M. (2009). The maximal electroshock seizure (MES) model in the preclinical assessment of potential new antiepileptic drugs. Methods Find Exp Clin Pharmacol, 31: 101. https://doi.org/ 10.1358/mf.2009.31.2.1338414.
  • Buterbaugh, G.G., Michelson, H.B., Keyser, D.O. (1986). Status epilepticus facilitated by pilocarpine in amygdala kindled rats. Exp. Neural, 94: 91-102. https://doi.org/10.1016/0014-4886(86)90274-8.
  • Campbell, A.M., Holmes, O. (1984). Bicuculline epileptogenesis in the rat. Brain Res, 323: 239-246. https://doi.org/10.1016/0006-8993(84)90294-4.
  • Campos G, Fortuna A, Falcão A, Alves G. (2017). In vitro and in vivo experimental models employed in the discovery and development of antiepileptic drugs for pharmacoresistant epilepsy. Epilepsy Res, 146:63-86. doi: 10.1016/j.eplepsyres.2018.07.008.
  • Carrea, R., Lanari, A. (1962). Chronic effect of tetanus toxin applied locally to the cerebral cortex of the dog. Science, 137: 342-343. https://doi.org/10.1126/science.137.3527.342.
  • Chen, R.C., Huang, Y.H., How, S.W. (1986). Systemic penicillin as an experimental model of epilepsy. Exp Neurol, 92: 533-540. https://doi.org/10.1016/0014-4886(86)90295-5.
  • Chusid, J.G., Kopeloff, L.M. (1962). Epileptogenic effects of pure metals implanted in motor cortex of monkeys. J Appl Physiol, 17: 697-700. https://doi.org/10.1152/jappl.1962.17.4.697.
  • Coenen, A.M., Luijtelaar, E.V.L. (1987). The WAG/Rij rat model for absence epilepsy: age and sex factors. Epilepsy Res, 1: 297-301. https://doi.org/10.1016/0920-1211(87)90005-2.
  • Curtis, D.R., Duggan, A.W., Felix, D., Johnston, G.A.R. (1970). GABA, bicuculline and central inhibition. Nature, 226: 1222-1224. https://doi.org/10.1038/2261222a0.
  • Daniels, J., Spehlmann, R. (1973). The convulsant effect of topically applied atropine. Electroencephalogr Clin Neurophysiol, 34: 83–87. https://doi.org/10.1016/0013-4694(73)90155-7.
  • Deflorida, A.F., Delgado, J.M. (1958). Lasting behavioral and EEG changes in cats induced by prolonged stimulation of amygdala. Am J Physiol, 193: 223-229. https://doi.org/10.1152/ajplegacy.1958.193.1.223.
  • Deyn, D.P., Hooge, D.R., Marescau, B., Pei, Y.Q. (1992). Chemical models of epilepsy with some reference to their applicability in the development of anticonvulsants. Epilepsy Res, 12: 87–110. https://doi.org/10.1016/0920-1211(92)90030-w.
  • Faingold, C.L., Browning, R.A. (1987). Mechanisms of anticonvulsant drug action. II. Drugs primarily used for absence epilepsy. Eur J Pediatr, 146: 8-14. https://doi.org/10.1007/bf00647274.
  • Fariello, R.G. (1976). Parenteral penicillin in rats: an experimental model for multifocal epilepsy. Epilepsia, 16: 217-222. https://doi.org/10.1111/j.1528-1157.1976.tb03399.x.
  • Ferguson, J.H., Jasper, H.H., Laminar, D.C. (1971). Studies of acetylcholine-activated epileptiform discharge in cerebral cortex. Electroencephalogr Clin Neurophysiol, 30: 377-390. https://doi.org/10.1016/0013-4694(71)90252-5.
  • Fisher, R.S. (1989). Animal models of the epilepsies. Brain Res Rev, 14: 245–278. https://doi.org/10.1016/0165-0173(89)90003-9.
  • Fisher, R.S., Prince, D.A. (1977). Spike-wave rhythms in cat cortex induced by parenteral penicillin. I. Electroencephalographic features. Electroencephalogr Clin Neurophysiol, 42: 608-624. https://doi.org/10.1016/0013-4694(77)90279-6.
  • Freed, W.J. (1985). Selective inhibition of homocysteine-induced seizures by glutamic acid diethyl ester and other glutamate esters. Epilepsia, 26: 30-36. https://doi.org/10.1111/j.1528-1157.1985.tb05185.x.
  • Gloor, P., Fariello, R.G. (1988). Generalized epilepsy: some of its cellular mechanisms differ from those of focal epilepsy. Trends Neurosci, 11: 63-68. https://doi.org/10.1016/0166-2236(88)90166-x.
  • Hanna, G.R., Stalmaster, R.M. (1973). Cortical epileptic lesions produced by freezing. Neurology, 23: 918-925. https://doi.org/10.1212/wnl.23.9.918.
  • Inostroza, M., Cid, E., Menendez, de la Prida, L., Sandi, C. (2012). Different emotional disturbances in two experimental models of temporal lobe epilepsy in rats. PLoS One, 7(6). https://doi.org/10.1371/journal.pone.0038959.
  • Kandratavicius, L., Balista, A.P., Aguiar, C.L., Ruggiero, R.N., Umeoka, H., Cairasco., G.N. (2014). Animal Models of Epilepsy: Utility and Limitations. Neuropsychiatr Dis Treat, 10: 1693–1705. https://doi.org/10.2147/NDT.S50371.
  • Kopeloff, L.M. (1960). Experimental epilepsy in the mouse. Proc Soc Exp Biol Med; 104: 500-504. https://doi.org/10.1016/S0149-7634(05)80076-4.
  • Levesque, M, Avoli, M. (2013). The kainic acid model of temporal lobe epilepsy. Neurosci Biobehav Rev, 37: 2887–2899. https://doi.org/10.3949/ccjm.51.2.293.
  • Löscher, W. (2011). Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure, 20: 359–368. https://doi.org/10.1016/j.seizure.2011.01.003.
  • Löscher W, Klitgaard H, Twyman RE, Schmidt D. (2013). New avenues for antiepileptic drug discovery and development. Nat Rev Drug Discov 12:757–776. doi: 10.1007/s11064-017-2222-z. Luijtelaar GV, Onat FY, Gallagher MJ. (2014). Animal models of absence epilepsies: What do they model and do sex and sex hormones matter? Neurobiol Dis. 72: 167–179. doi: 10.1016/j.nbd.2014.08.014.
  • Luszczki, J.J., Czuczwar. M., Gawlik, P., Pozniak, S.G., Czuczwar, K., Czuczwar, S.J. (2006). 7-Nitroindazole potentiates the anticonvulsant action of some second-generation antiepileptic drugs in the mouse maximal electroshock-induced seizure model. J Neural Transm, 113: 1157–1168. https://doi.org/10.1007/s00702-005-0417-y.
  • Macdonald, R.L., Barker, J.L. (1977). Pentylenetetrazol and penicillin are selective antagonists of GABA-mediated post-synaptic inhibition in cultured mammalian neurones. Nature, 267: 720-721. https://doi.org/10.1038/267720a0.
  • Matsumoto, H., Marsan, C. (1964). Cortical Cellular Epilepsy: Phenomena in Experimental lctal Manifestations. Exp Neurol, 326: 305–326. https://doi.org/10.1016/0014-4886(64)90025-1.
  • McCormick, D.A., Connors, B.W., Lighthall, J.W., Prince, D.A. (1959. Comparative lectrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J Neurophysiol, 54: 782-806. https://doi.org/10.1152/jn.1985.54.4.782.
  • Meldrum, B. (1984). GABAergic agents as anticonvulsants in baboons with photosensitive epilepsy. Neurosci Lett, 3: 345-349. https://doi.org/10.1016/0304-3940(84)90537-8.
  • Olsen, R.W. (1982). Drug interactions at the GABA receptor-ionophore complex. Annu Rev Pharmacol Toxicol, 22: 245-277. https://doi.org/10.1146/annurev.pa.22.040182.001333
  • Piredda, S., Gale, K. (1982). Role of excitatory amino acid transmission in the genesis of seizures elicited from the deep prepiriform cortex. Brain Res, 377: 205-210. https://doi.org/10.1016/0006-8993(86)90859-0.
  • Porter, R.J., Cereghino, J.J., Gladding, G.D., Hessie, B.J., Kupferberg, H.J., Scoville, B. (1984). Antiepileptic drug development program. Clev Clin Quart, 51: 293-305.
  • Postnova, S., Finke, C., Jin, W., Schneider, H., Braun, H.A. (2010). A computational study of the interdependencies between neuronal impulse pattern, noise effects and synchronization. J Physiol Paris, 104:176-189. https://doi.org/10.1016/j.jphysparis.2009.11.022.
  • Prince , D.A., Farrell, D. (1969). Centrencephalic spike-wave discharges following parenteral penicillin injection in the rat. Neurology, 19: 309-310. Reddy, D.S., Kuruba, R. (2013). Experimental models of status epilepticus and neuronal injury for evaluation of therapeutic interventions. Int J Mol Sci, 14: 18284–18318. https://doi.org/ 10.3390/ijms140918284.
  • Remler, M.P., Marcussen, W.H. (1986). Systemic focal epileptogenesis. Epilepsia, 27: 35-42. https://doi.org/10.1111/j.1528-1157.1986.tb03498.x.
  • Remler, M.P., Sigvardt, K., Marcussen, W.H. (1986). Pharmacological response of systemically derived focal epileptic lesions, Epilepsia, 27: 671-677. https://doi.org/10.1111/j.1528-1157.1986.tb03594.x.
  • Seyfried, T.N., Glaser, G.H. (1985). A review of mouse mutants as genetic models of epilepsy. Epilepsia, 26: 143-150. https://doi.org/10.1111/j.1528-1157.1985.tb05398.x.
  • Snead, O., Bearden, L. (2006). Anticonvulsants specific for petit mal antagonize epileptogenic effect of leucine enkephalin. Science, 210: 1031–1033. https://doi.org/10.1126/science.6254150.
  • Snead, O.C. (1988). Gamma-Hydroxybutyrate model of generalized absence seizures: further characterization and comparison with other absence models. Epilepsia, 29: 361–368. https://doi.org/10.1111/j.1528-1157.1988.tb03732.x.
  • Usunoff, G., Atsev, E., Tchavdarov, D. (1969). On the mechanisms of picrotoxin epileptic seizure (macro- and micro-electrode investigations). Electroencephalogr Clin Neurophysiol, 27: 444. https://doi.org/10.4062/biomolther.2018.218.
  • Vicedomini, J.P., Nadler, J.V. (1987). A model of status epilepticus based on electrical stimulation of hippocampal afferent pathways. Exp Neurol, 96: 681- 691. https://doi.org/10.1016/0014-4886(87)90229-9.
  • Wahab, A., Albus, K., Gabriel, S., Heinemann, U. (2010). In search of models of pharmacoresistant epilepsy. Epilepsia, 51: 154–159. https://doi.org/10.1111/j.1528-1167.2010.02632.x.
  • Walton, N.Y., Treiman, D.M. (1988). Experimental secondarily generalized convulsive status epilepticus induced by homocysteine thiolactone. Epilepsy Res, 2: 79-86. https://doi.org/10.1016/0920-1211(88)90023-x.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi, Veteriner Cerrahi
Bölüm Makaleler
Yazarlar

Kayhan Özkan 0000-0002-5956-093X

Yayımlanma Tarihi 31 Mayıs 2020
Gönderilme Tarihi 20 Ağustos 2019
Yayımlandığı Sayı Yıl 2020 Cilt: 3 Sayı: 1

Kaynak Göster

APA Özkan, K. (2020). LABORATUVAR HAYVANLARINDA DENEYSEL EPİLEPSİ MODELLERİ. Izmir Democracy University Health Sciences Journal, 3(1), 38-51.

227151960619606                 19629                   19630 1995319957 

19952  19958  20682 

20686


23848