Derleme
BibTex RIS Kaynak Göster

THE MOLECULAR MECHANISM, TYPES AND TREATMENT OF SCAR FORMATION

Yıl 2024, Cilt: 7 Sayı: 3, 223 - 247
https://doi.org/10.52538/iduhes.1590063

Öz

Wound healing and scar formation is a complex biological process that occurs as a response to injury, characterized by the deposition of extracellular matrix components and the proliferation of fibroblasts. The mechanisms underlying wound healing and following scar formation can vary significantly depending on the type of scar, such as hypertrophic scars and keloids, and are influenced by various cellular and molecular factors. Myofibroblasts, a differentiated form of fibroblasts, play a pivotal role in wound healing and scar formation due to their contractile properties and ability to produce large amounts of collagen and other extracellular matrix components.
Scar formation process involves complex interactions among various cell types, including fibroblasts, macrophages, and endothelial cells, as well as the extracellular matrix components. Understanding these mechanisms is crucial for developing therapeutic strategies to minimize pathological scarring, such as hypertrophic scars and keloids.
The initial phase of scar formation is dominated by inflammation, which is essential for initiating the healing process. Inflammatory cells, particularly macrophages, play a pivotal role in orchestrating the wound healing response. Fibroblasts are the primary effector cells in scar formation, responsible for synthesizing extracellular matrix components, including collagen.
Scars can be classified into several types based on their characteristics, underlying mechanisms, and clinical presentations. The two most commonly discussed types of scars are hypertrophic scars and keloids, but there are also atrophic scars, contracture scars, and acne scars, each with distinct features and implications for treatment.
The aim of this study is to explain the molecular mechanism, types and treatment of scar formation.

Kaynakça

  • Agarwal, N., Gupta, L., Khare, A. K., Kuldeep, C. M., Mittal, A. (2015). Therapeutic response of 70% trichloroacetic acid cross in atrophic acne scars. Dermatologic Surgery, 41(5), 597-604. https://doi.org/10.1097/dss.0000000000000355
  • Al-Marzouqi, H., Nagy, E., Sair, M., and Mabrouk, A. (2022). The efficacy of low energy fractional carbon dioxide laser therapy in management of post-surgical hypertrophic scars. The Egyptian Journal of Plastic and Reconstructive Surgery, 46(3), 231-238. https://doi.org/10.21608/ejprs.2022.254701
  • Aydoğmuş, S., Kelekci, K., Şengül, M., Demirel, E., Karaca, Ş., Desdicioğlu, R., Kelekci, S. (2017). Factors affecting the development of scar formation in abdominal surgery performed for gynecologic and obstetric conditions. Turkderm, 51(1), 12-17. https://doi.org/10.4274/turkderm.58751
  • Batool, Z., Muhammad, G., Iqbal, M., Aslam, M., Raza, M., Sajjad, N., Abdullah, M., Akhtar, N., Syed, A., Elgorban, A., Al-Rejaie, S., Shafiq, Z. (2022). Hydrogel assisted synthesis of gold nanoparticles with enhanced microbicidal and in vivo wound healing potential. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-10495-3
  • Bikash, C. and Sarkar, R. (2023). Topical management of acne scars: the uncharted terrain. Journal of Cosmetic Dermatology, 22(4), 1191-1196. https://doi.org/10.1111/jocd.15584
  • Bitar, M. and Al-Mulla, F. (2012). ROS constitute a convergence nexus in the development of igf1 resistance and impaired wound healing in a rat model of type 2 diabetes. Disease Models and Mechanisms, 5(3), 375-388. https://doi.org/10.1242/dmm.007872
  • Butzelaar, L., Niessen, F., Talhout, W., Schooneman, D., Ulrich, M., Beelen, R., … and Molen, A. (2017). Different properties of skin of different body sites: the root of keloid formation?. Wound Repair and Regeneration, 25(5), 758-766. https://doi.org/10.1111/wrr.12574
  • Chanprapaph, K., Tanrattanakorn, S., Wattanakrai, P., Wongkitisophon, P., and Vachiramon, V. (2012). Effectiveness of onion extract gel on surgical scars in asians. Dermatology Research and Practice, 2012, 1-6. https://doi.org/10.1155/2012/212945
  • Choi, J., Jun, J. H., Kim, J. H., Sung, H. J., Lee, J. H. (2014). Synergistic effect of interleukin-6 and hyaluronic acid on cell migration and erk activation in human keratinocytes. Journal of Korean Medical Science (Suppl 3), 29, 210-126. https://doi.org/10.3346/jkms.2014.29.s3.s210
  • Choi, Y. S., Khan, G., Nam, S. M., Park, E. S. (2018). Successful treatment of post-traumatic elbow scar contracture using combined approach of surgical release & early fractional laser resurfacing. Medical Lasers, 7(1), 32-37. https://doi.org/10.25289/ml.2018.7.1.32
  • Darby, I. and Desmoulière, A. (2020). Scar formation: cellular mechanisms., 19-26. https://doi.org/10.1007/978-3-030-44766-3_3
  • Deng, X., Chen, Q., Qiang, L., Chi, M., Xie, N., Wu, Y., Yao, M., Zhao, D., Ma, J., Zhang, N., Xie, Y. (2018). Development of a porcine full-thickness burn hypertrophic scar model and investigation of the effects of shikonin on hypertrophic scar remediation. Frontiers in Pharmacology, 9, 1-12. https://doi.org/10.3389/fphar.2018.00590
  • Deng, X., Zhao, F., Zhao, D., Zhang, Q., Zhu, Y., Chen, Q., Xie, Y. (2021). Oxymatrine promotes hypertrophic scar repair through reduced human scar fibroblast viability, collagen and induced apoptosis via autophagy inhibition. International Wound Journal, 19(5), 1221-1231. https://doi.org/10.1111/iwj.13717
  • Donovan, J., Xu, S., Norman, J., Abraham, D. (2013). Platelet-derived growth factor alpha and beta receptors have overlapping functional activities towards fibroblasts. Fibrogenesis & Tissue Repair, 6(1), 1-9. https://doi.org/10.1186/1755-1536-6-10
  • Duan, M., Zhang, Y., Zhang, H., Meng, Y., Qian, M., Zhang, G. (2020). Epidermal stem cell-derived exosomes promote skin regeneration by downregulating transforming growth factor-β1 in wound healing. Stem Cell Research & Therapy, 11(1), 1-11. https://doi.org/10.1186/s13287-020-01971-6
  • Dwivedi, C., Pandey, H., Pandey, A., Patil, S., Ramteke, P., Laux, P., Luch, A., Singh, A. (2019). In vivo biocompatibility of electrospun biodegradable dual carrier (antibiotic + growth factor) in a mouse model—implications for rapid wound healing. Pharmaceutics, 11(4), 1-19. https://doi.org/10.3390/pharmaceutics11040180
  • Ebrahiminaseri, A., Sadeghizadeh, M., Moshaii, A., Asgaritarghi, G., and Safari, Z. (2021). Combination treatment of dendrosomal nanocurcumin and low-level laser therapy develops proliferation and migration of mouse embryonic fibroblasts and alter tgf-β, vegf, tnf-α and il-6 expressions involved in wound healing process. Plos One, 16(5), 1-23. e0247098. https://doi.org/10.1371/journal.pone.0247098
  • Eisendle, K., Pichler, M., Luca, J., Thuile, T. (2019). Use of self‐adherent silicone sheets in a pediatric burn patient: a case report and instructions for use. Pediatric Dermatology, 37(1), 257-260. https://doi.org/10.1111/pde.14017
  • El‐Tahlawi, S. and Mohamed, B. (2023). Intralesional triamcinolone acetonide in the treatment of keloids and hypertrophic scars. Fayoum University Medical Journal, 11(1), 49-55. https://doi.org/10.21608/fumj.2023.278472
  • Fabbrocini, G., Annunziata, M., D'Arco, V., Vita, V., Lodi, G., Mauriello, M., Monfrecola, G. (2010). Acne scars: pathogenesis, classification and treatment. Dermatology Research and Practice, 2010(1), 1-13. https://doi.org/10.1155/2010/893080
  • Feng, Y., Sun, Z., Liu, S., Wu, J., Zhao, B., Lv, G., Zhou, X. (2019). Direct and indirect roles of macrophages in hypertrophic scar formation. Frontiers in Physiology, 10, 1-7. https://doi.org/10.3389/fphys.2019.01101
  • Finnerty, C., Jeschke, M., Branski, L., Barret, J., Dziewulski, P., Herndon, D. (2016). Hypertrophic scarring: the greatest unmet challenge after burn injury. The Lancet, 388(10052), 1427-1436. https://doi.org/10.1016/s0140-6736(16)31406-4
  • Gauglitz, G. (2013). Management of keloids and hypertrophic scars: current and emerging options. Clinical Cosmetic and Investigational Dermatology, 103. https://doi.org/10.2147/ccid.s35252
  • Gaur, N. (2018). A comparative analysis of carbon dioxide laser technique and derma roller therapy in post-acne scars patients. International Journal of Surgery Science, 2(1), 48-50. https://doi.org/10.33545/surgery.2018.v2.i1a.888
  • Gisquet, H., Liu, H., Blondel, W., Leroux, A., Latarche, C., Merlin, J., Guillemin, F. (2011). Intradermal tacrolimus prevent scar hypertrophy in a rabbit ear model: a clinical, histological and spectroscopical analysis. Skin Research and Technology, 17(2), 160-166. https://doi.org/10.1111/j.1600-0846.2010.00479.x
  • Guan, Y., Niu, H., Liu, Z., Dang, Y., Shen, J., Zayed, M., Ma, L., Guan, J. (2021). Sustained oxygenation accelerates diabetic wound healing by promoting epithelialization and angiogenesis and decreasing inflammation. Science Advances 7(35), 1-14. https://doi.org/10.1126/sciadv.abj0153
  • Gurtner, G., Dauskardt, R., Wong, V., Bhatt, K., Wu, K., Vial, I., Longaker, M. (2011). Improving cutaneous scar formation by controlling the mechanical environment. Annals of Surgery Open, 254(2), 217-225. https://doi.org/10.1097/sla.0b013e318220b159
  • Hahn, J., Glaser, K., McFarland, K., Aronow, B., Boyce, S., Supp, D. (2013). Keloid‐derived keratinocytes exhibit an abnormal gene expression profile consistent with a distinct causal role in keloid pathology. Wound Repair and Regeneration, 21(4), 530-544. https://doi.org/10.1111/wrr.12060
  • He, T., Bai, X., Yang, L., Fan, L., Li, Y., Su, L., Gao, J., Han, S., Hu, D. (2015). Loureirin b inhibits hypertrophic scar formation via inhibition of the tgf-β1-erk/jnk pathway. Cellular Physiology and Biochemistry, 37(2), 666-676. https://doi.org/10.1159/000430385
  • He, Y., Deng, Z., Alghamdi, M., Lü, L., Fear, M., and He, L. (2017). From genetics to epigenetics: new insights into keloid scarring. Cell Proliferation, 50(2), 1-8. https://doi.org/10.1111/cpr.12326
  • He, J., Fang, B., Shan, S., Xie, Y., Wang, C., Zhang, Y., Zhang, X., Li, Q. (2021). Mechanical stretch promotes hypertrophic scar formation through mechanically activated cation channel piezo1. Cell Death and Disease, 12(3), 1-13. https://doi.org/10.1038/s41419-021-03481-6
  • Hesketh, M., Sahin, K., West, Z., Murray, R. (2017). Macrophage phenotypes regulate scar formation and chronic wound healing. International Journal of Molecular Sciences, 18(7), 1-10. https://doi.org/10.3390/ijms18071545
  • Hsiao, C., Cheng, H. W., Huang, C. M., Li, H. R., Ou, M. H., Huang, J. R., Khoo, K., Yu, W. H., Chen, Y., Wang, Y., Chiou, A., Kuo, J. (2017). Fibronectin in cell adhesion and migration via n-glycosylation. Oncotarget 8(41), 70653-70668. https://doi.org/10.18632/oncotarget.19969
  • Hu, Z., Tang, B., Guo, D., Zhang, J., Liang, Y., Ma, D., Zhu, J. (2014). Expression of insulin‐like growth factor‐1 receptor in keloid and hypertrophic scar. Clinical and Experimental Dermatology, 39(7), 822-828. https://doi.org/10.1111/ced.12407
  • Huang, C., Murphy, G., Akaishi, S., Ogawa, R. (2013). Keloids and hypertrophic scars. Plastic and Reconstructive Surgery Global Open, 1(4), e25. https://doi.org/10.1097/gox.0b013e31829c4597
  • Huang, L., Chen, D., Xu, Q., Zheng, Z., Dai, X. (2020). The use of the scar cosmesis assessment and rating scale to evaluate the cosmetic outcomes of totally thoracoscopic cardiac surgery. Journal of Cardiothoracic Surgery, 15(1). https://doi.org/10.1186/s13019-020-01294-w
  • Hunasgi, S., Koneru, A., Vanishree, M., Ravikumar, S. (2013). Keloid: a case report and review of pathophysiology and differences between keloid and hypertrophic scars. Journal of Oral and Maxillofacial Pathology, 17(1), 116. https://doi.org/10.4103/0973-029x.110701
  • Igarashi, J., Fukuda, N., Inoue, T., Nakai, S., Saito, K., Fujiwara, K., Soma, M. (2015). Preclinical study of novel gene silencer pyrrole-imidazole polyamide targeting human tgf-β1 promoter for hypertrophic scars in a common marmoset primate model. Plos One, 10(5), e0125295. https://doi.org/10.1371/journal.pone.0125295
  • İnan, Z., Saraydın, S. (2013). Investigation of the wound healing effects of chitosan on FGFR3 and VEGF immunlocalization in experimentally diabetic rats. International Journal of Biomedical Materials Research, 1(1), 1-8. https://doi.org/10.11648/j.ijbmr.20130101.11
  • Jin, J., Zhai, H., Jia, Z., and Luo, X. (2019). Long non-coding rna hoxa11-as induces type I collagen synthesis to stimulate keloid formation via sponging mir-124-3p and activation of smad5 signaling. Ajp Cell Physiology, 317(5), C1001-C1010. https://doi.org/10.1152/ajpcell.00319.2018
  • Kauvar, A., Kubicki, S., Suggs, A., Friedman, P. (2019). Laser therapy of traumatic and surgical scars and an algorithm for their treatment. Lasers in Surgery and Medicine, 52(2), 125-136. https://doi.org/10.1002/lsm.23171
  • Kieran, I., Knock, A., Bush, J., So, K., Metcalfe, A., Hobson, R., Ferguson, M. (2013). Interleukin‐10 reduces scar formation in both animal and human cutaneous wounds: results of two preclinical and phase ii randomized control studies. Wound Repair and Regeneration, 21(3), 428-436. https://doi.org/10.1111/wrr.12043
  • Kim, D., Ryu, H., Choi, J., Ahn, H., Kye, Y., and Seo, S. (2014). A comparison of the scar prevention effect between carbon dioxide fractional laser and pulsed dye laser in surgical scars. Dermatologic Surgery, 40(9), 973-978. https://doi.org/10.1097/01.dss.0000452623.24760.9c
  • Kim, S., Lee, S., Yi, S., Jun, S., Yi, Y., Nagar, H., Oh, S. (2021). Tauroursodeoxycholic acid decreases keloid formation by reducing endoplasmic reticulum stress as implicated in the pathogenesis of keloid. International Journal of Molecular Sciences, 22(19), 10765. https://doi.org/10.3390/ijms221910765
  • Kravvas, G. and Al‐Niaimi, F. (2017). A systematic review of treatments for acne scarring. part 1: non-energy-based techniques. Scars Burns & Healing, 3, 1-17. https://doi.org/10.1177/2059513117695312
  • Kwak, D., Bae, T., Kim, W., Kim, H. (2016). Anti-vascular endothelial growth factor (bevacizumab) therapy reduces hypertrophic scar formation in a rabbit ear wounding model. Archives of Plastic Surgery, 43(06), 491-497. https://doi.org/10.5999/aps.2016.43.6.491
  • Krakowski, A., Goldenberg, A., Eichenfield, L., Murray, J., Shumaker, P. (2014). Ablative fractional laser resurfacing helps treat restrictive pediatric scar contractures. Pediatrics, 134(6), e1700-e1705. https://doi.org/10.1542/peds.2014-1586
  • Lee, S., Zheng, Z., and Roh, M. (2013). Early postoperative treatment of surgical scars using a fractional carbon dioxide laser: a split-scar, evaluator-blinded study. Dermatologic Surgery, 39(8), 1190-1196. https://doi.org/10.1111/dsu.12228
  • Li, P., He, Q., and Luo, C. (2014). Overexpression of mir‐200b inhibits the cell proliferation and promotes apoptosis of human hypertrophic scar fibroblastsin vitro. The Journal of Dermatology, 41(10), 903-911. https://doi.org/10.1111/1346-8138.12600
  • Li, P., Li, H., Zhong, L., Sun, Y., Liu, Y., Wu, M., Zhang, L., Kong, Q., Wang, S., Lv, C. (2015). Molecular events underlying maggot extract promoted rat in vivo and human in vitro skin wound healing. Wound Repair and Regeneration 23 (1), 65-73. https://doi.org/10.1111/wrr.12243
  • Li, J., Chen, L., Cao, C., Yan, H., Zhou, B., Gao, Y., Li, J. (2016). The long non-coding rna lncrna8975-1 is upregulated in hypertrophic scar fibroblasts and controls collagen expression. Cellular Physiology and Biochemistry, 40(1-2), 326-334. https://doi.org/10.1159/000452548
  • Li, X., Guo, L., Yang, X., Wang, J., Hou, Y., Zhu, S., Liu, Y. (2019). Tgf‐β1‐induced connexin43 promotes scar formation via the erk/mmp‐1/collagen iii pathway. Journal of Oral Rehabilitation, 47(S1), 99-106. https://doi.org/10.1111/joor.12829
  • Li, K., Nicoli, F., Cui, C., Xi, W., Al-Mousawi, A., Zhang, Z., Zhang, Y. (2020). Treatment of hypertrophic scars and keloids using an intralesional 1470 nm bare-fibre diode laser: a novel efficient minimally-invasive technique. Scientific Reports, 10(1), 1-11. https://doi.org/10.1038/s41598-020-78738-9
  • Li, S., Li, Y., Wu, Z., Wu, Z., and Fang, H. (2021). Diabetic ferroptosis plays an important role in triggering on inflammation in diabetic wound. Ajp Endocrinology and Metabolism, 321(4), E509-E520. https://doi.org/10.1152/ajpendo.00042.2021
  • Li, M. (2023). Inhibition of proliferation, migration, and invasion of keloid fibroblasts by mir-183-5p through downregulating egr1. International Journal of Morphology, 41(6), 1610-1619. https://doi.org/10.4067/s0717-95022023000601610
  • Limandjaja, G., Niessen, F., Scheper, R., Gibbs, S. (2020). Hypertrophic scars and keloids: overview of the evidence and practical guide for differentiating between these abnormal scars. Experimental Dermatology, 30(1), 146-161. https://doi.org/10.1111/exd.14121
  • Ma, L., Gan, C., Huang, Y., Wang, Y., Luo, G., Wu, J. (2014). Comparative proteomic analysis of extracellular matrix proteins secreted by hypertrophic scar with normal skin fibroblasts. Burns & Trauma, 2(2), 76-83. https://doi.org/10.4103/2321-3868.130191
  • Ma, F., Shen, J., Zhang, H., Zhang, Z., Yang, A., Xiong, J., Jiang, Y. (2022). A novel lncrna fpasl regulates fibroblast proliferation via the pi3k/akt and mapk signaling pathways in hypertrophic scar. Acta Biochimica Et Biophysica Sinica, 274-284. https://doi.org/10.3724/abbs.2022122
  • Makwana, J., Vora, D., Soyal, V. (2022). A comparative study of efficacy of fractional co2 laser vs microdermabrasion in treatment of acne scars (total 100 patients). International Journal of Research and Review, 9(1), 34-38. https://doi.org/10.52403/ijrr.20220105
  • Masi, E., Campos, A., Masi, F., Ratti, M., Ike, I., Masi, R. (2016). The influence of growth factors on skin wound healing in rats. Brazilian Journal of Otorhinolaryngology, 82(5), 512-521. https://doi.org/10.1016/j.bjorl.2015.09.011
  • Medyukhina, A., Vogler, N., Latka, I., Kemper, S., Böhm, M., Dietzek, B., Popp, J. (2011). Automated classification of healthy and keloidal collagen patterns based on processing of shg images of human skin. Journal of Biophotonics, 4(9), 627-636. https://doi.org/10.1002/jbio.201100028
  • Mohammadi, A. A., Parand, A., Kardeh, S., Janati, M., and Mohammadi, S. (2018). Efficacy of topical enalapril in treatment of hypertrophic scars. World Journal of Plastic Surgery, 7(3), 326-331. https://doi.org/10.29252/wjps.7.3.326
  • Morris, M., Allukian, M., Herdrich, B., Caskey, R., Zgheib, C., Xu, J., Liechty, K. (2014). Modulation of the inflammatory response by increasing fetal wound size or interleukin‐10 overexpression determines wound phenotype and scar formation. Wound Repair and Regeneration, 22(3), 406-414. https://doi.org/10.1111/wrr.12180
  • Moura, J., Sørensen, A. E., Leal, E. C., Svendsen, R. P., Carvalho, L., Willemoes, R. J., Jorgensen, P. T., Jenssen, H., Wengel, J., Dalgaard, R. T., Carvalho, E. (2019). Microrna-155 inhibition restores fibroblast growth factor 7 expression in diabetic skin and decreases wound inflammation. Scientific Reports, 9(1), 1-11. https://doi.org/10.1038/s41598-019-42309-4
  • Natallya, F., Herwanto, N., Prakoeswa, C., Indramaya, D., Rantam, F. (2019). Effective healing of leprosy chronic plantar ulcers by application of human amniotic membrane stem cell secretome gel. Indian Journal of Dermatology, 64(3), 250. https://doi.org/10.4103/ijd.ijd_6_17
  • Niederstätter, I., Schiefer, J., and Fuchs, P. (2021). Surgical strategies to promote cutaneous healing. Medical Sciences, 9(2), 45. https://doi.org/10.3390/medsci9020045
  • Noh, K., Liu, X., Zhong, Z., Yang, C., Kim, Y., Lee, G., Choi, K., Kim, K. (2018). Leukocyte-poor platelet-rich plasma-derived growth factors enhance human fibroblast proliferation in vitro. Clinics in Orthopedic Surgery, 10(2), 240-247. https://doi.org/10.4055/cios.2018.10.2.240
  • Ogawa, R., Okai, K., Tokumura, F., Mori, K., Ohmori, Y., Huang, C., Hyakusoku, H., Akaishi, S. (2012). The relationship between skin stretching/contraction and pathologic scarring: the important role of mechanical forces in keloid generation. Wound Repair and Regeneration, 20(2), 149-157. https://doi.org/10.1111/j.1524-475x.2012.00766.x
  • On, H., Lee, S., Lee, Y., Chang, H., Park, C., Roh, M. (2015). Evaluating hypertrophic thyroidectomy scar outcomes after treatment with triamcinolone injections and copper bromide laser therapy. Lasers in Surgery and Medicine, 47(6), 479-484. https://doi.org/10.1002/lsm.22375
  • Ong, C., Khoo, Y., Mukhopadhyay, A., Masilamani, J., Do, D., Lim, I., Phan, T. (2010). Comparative proteomic analysis between normal skin and keloid scar. British Journal of Dermatology, 162(6), 1302-1315. https://doi.org/10.1111/j.1365-2133.2010.09660.x
  • Palumbo, V., Rizzuto, S., Damiano, G., Fazzotta, S., Gottardo, A., Mazzola, G., Monte, A. (2021). Use of platelet concentrate gel in second-intention wound healing: a case report. Journal of Medical Case Reports, 15(1), 1-7. https://doi.org/10.1186/s13256-020-02649-6
  • Park, T. H., Seo, S. W., Kim, J. K., Chang, C. H. (2011). Management of chest keloids. Journal of Cardiothoracic Surgery, 6(1). https://doi.org/10.1186/1749-8090-6-49
  • Perdanasari, A., Torresetti, M., Grassetti, L., Nicoli, F., Zhang, Y., Dashti, T., Lazzeri, D. (2015). Intralesional injection treatment of hypertrophic scars and keloids: a systematic review regarding outcomes. Burns & Trauma, 3. https://doi.org/10.1186/s41038-015-0015-7
  • Pradhan, M. (2023). The molecular mechanisms involved in the hypertrophic scars post-burn injury. The Yale Journal of Biology and Medicine, 96(4), 549-563. https://doi.org/10.59249/rhuf5686
  • Prakoeswa, C., Rindiastuti, Y., Wirohadidjojo, Y., Komaratih, E., Dinaryati, A., Lestari, N., Rantam, F. (2020). Resveratrol promotes secretion of wound healing related growth factors of mesenchymal stem cells originated from adult and fetal tissues. Artificial Cells Nanomedicine and Biotechnology, 48(1), 1159-1166. https://doi.org/10.1080/21691401.2020.1817057
  • Qi, W., Yang, C., Dai, Z., Che, D., Feng, J., Mao, Y., Cheng, R., Wang, Z., He, X., Zhou, T., Gu, X., Yan, L., Yang, X., Ma, J., Gao, G. (2014). High levels of pigment epithelium–derived factor in diabetes impair wound healing through suppression of wnt signaling. Diabetes, 64(4), 1407-1419. https://doi.org/10.2337/db14-1111
  • Qin, Song, Xie, Y., Gou, Q., Guo, X., Qian, Y., Gou, X. (2017). JAK/STAT3 and Smad3 activities are required for the wound healing properties of Periplaneta americana extracts. International Journal of Molecular Medicine, 40 (2), 465-473. https://doi.org/10.3892/ijmm.2017.3040
  • Qiu, Y., Yang, S., Tan, J., Luo, G., Wang, H., Wu, J. (2015). Process of hypertrophic scar formation. Chinese Medical Journal, 128(20), 2787-2791. https://doi.org/10.4103/0366-6999.167359
  • Ren, Z., Hou, Y., Ma, S., Yang, T., Li, J., Cao, H., Ji, L. (2014). Effects of ccn3 on fibroblast proliferation, apoptosis and extracellular matrix production. International Journal of Molecular Medicine, 33(6), 1607-1612. https://doi.org/10.3892/ijmm.2014.1735
  • Rong, S., Li, C., Li, S., Wu, S., Sun, F. (2020). Genetically modified adipose‐derived stem cells with matrix metalloproteinase 3 promote scarless cutaneous repair. Dermatologic Therapy, 33(6), 1-8. https://doi.org/10.1111/dth.14112
  • Ruthenborg, R. J., Ban, J. J., Wazir, A., Takeda, N., Kim, J. (2014). Regulation of wound healing and fibrosis by hypoxia and hypoxia-inducible factor-1. Molecules and Cells 37(9), 637-643. https://doi.org/10.14348/molcells.2014.0150
  • Schouten, H., Nieuwenhuis, M., Schans, C., Niemeijer, A., Zuijlen, P. (2023). Considerations in determining the severity of burn scar contractures with focus on the knee joint. Journal of Burn Care & Research, 44(4), 810-816. https://doi.org/10.1093/jbcr/irad016
  • Seoudy, W., Dien, S., Reheem, T., Elfangary, M., Erfan, M. (2022). Macrophages of the m1 and m2 types play a role in keloids pathogenesis. International Wound Journal, 20(1), 38-45. https://doi.org/10.1111/iwj.13834
  • Sidgwick, G. and Bayat, A. (2011). Extracellular matrix molecules implicated in hypertrophic and keloid scarring. Journal of the European Academy of Dermatology and Venereology, 26(2), 141-152. https://doi.org/10.1111/j.1468-3083.2011.04200.x
  • Sidgwick, G. P., McGeorge, D., and Bayat, A. (2015). A comprehensive evidence-based review on the role of topicals and dressings in the management of skin scarring. Archives of Dermatological Research, 307(6), 461-477. https://doi.org/10.1007/s00403-015-1572-0
  • Shi, H., Lin, C., Lin, B., Wang, Z., Zhang, H., Wu, F., Xiao, J. (2013). The anti-scar effects of basic fibroblast growth factor on the wound repair in vitro and in vivo. Plos One, 8(4), 1-10e59966. https://doi.org/10.1371/journal.pone.0059966
  • Shibuya, Y., Okawa, H., Kondo, T., Khalil, D., Wang, L., Roca, Y., Jarrahy, R. (2022). Therapeutic downregulation of neuronal PAS domain 2 (npas2) promotes surgical skin wound healing. Elife, 11, 1-21. https://doi.org/10.7554/elife.71074
  • Shin, H., Suk, S., Chae, S., Yoon, K., Kim, J. (2021). Early postoperative treatment of mastectomy scars using a fractional carbon dioxide laser: a randomized, controlled, split-scar, blinded study. Archives of Plastic Surgery, 48(4), 347-352. https://doi.org/10.5999/aps.2020.02495
  • Shorka, D., Yemini, N., Shushan, G., Tokar, L., Benbenishty, J., and Woloski-Wruble, A. (2021). Body image and scar assessment: a longitudinal cohort analysis of cardiothoracic, neurosurgery and urology patients. Journal of Clinical Nursing, 31(17-18), 2605-2611. https://doi.org/10.1111/jocn.16083
  • Song, H., Tan, J., Fu, Q., Huang, L., Ao, M. (2018). Comparative efficacy of intralesional triamcinolone acetonide injection during early and static stage of pathological scarring. Journal of Cosmetic Dermatology, 18(3), 874-878. https://doi.org/10.1111/jocd.12690
  • Sun, M., He, Y., Zhou, T., Zhang, P., Gao, J., Lu, F. (2017). Adipose extracellular matrix/stromal vascular fraction gel secretes angiogenic factors and enhances skin wound healing in a murine model. Biomed Research International, 2017, 1-11. https://doi.org/10.1155/2017/3105780
  • Surakunprapha, P., Winaikosol, K., Chowchuen, B., Punyavong, P., Jenwitheesuk, K., and Jenwitheesuk, K. (2020). A prospective randomized double-blind study of silicone gel plus herbal extracts versus placebo in pre-sternal hypertrophic scar prevention and amelioration. Heliyon, 6(5), e03883. https://doi.org/10.1016/j.heliyon.2020.e03883
  • Suryanarayan, S., Budamakuntla, L., Khadri, S., and Sarvajnamurthy, S. (2014). Efficacy of autologous platelet-rich plasma in the treatment of chronic nonhealing leg ulcers. Plastic and Aesthetic Research, 1(2), 65-69. https://doi.org/10.4103/2347-9264.139703
  • Süntar, İ, Çetinkaya, S., Panieri, E., Saha, S., Buttari, B., Saso, L. (2021). Regulatory role of nrf2 signaling pathway in wound healing process. Molecules 26(9), 2424. https://doi.org/10.3390/molecules26092424
  • Takaya, K., Aramaki-Hattori, N., Sakai, S., Okabe, K., Asou, T., Kishi, K. (2022). Decorin inhibits dermal mesenchymal cell migration and induces scar formation. Plastic and Reconstructive Surgery Global Open, 10(4), e4245. https://doi.org/10.1097/gox.0000000000004245
  • Tan, J., Zhou, J., Huang, L., Fu, Q., Ao, M., Yuan, L., Luo, G. (2020). Hypertrophic scar improvement by early intervention with ablative fractional carbon dioxide laser treatment. Lasers in Surgery and Medicine, 53(4), 450-457. https://doi.org/10.1002/lsm.23301
  • Tan, Y., Zhang, M., Kong, Y., Zhang, F., Wang, Y., Huang, Y., Song, W., Li, Z., Hou, L., Liang, L., Guo, X., Liu, Q., Feng, Y., Zhang, C., Fu, X., Huang, S. (2023). Fibroblasts and endothelial cells interplay drives hypertrophic scar formation: insights from in vitro and in vivo models. Bioengineering & Translational Medicine, 9(2), 1-15. https://doi.org/10.1002/btm2.10630
  • Tripathi, S., Soni, K., Agrawal, P., Gour, V., Mondal, R., Soni, V. (2020). Hypertrophic scars and keloids: a review and current treatment modalities. Biomedical Dermatology, 4(1), 1-11. https://doi.org/10.1186/s41702-020-00063-8
  • Volk, S., Wang, Y., Mauldin, E., Liechty, K., Adams, S. (2011). Diminished type iii collagen promotes myofibroblast differentiation and increases scar deposition in cutaneous wound healing. Cells Tissues Organs, 194(1), 25-37. https://doi.org/10.1159/000322399
  • Vukelic, S., Stojadinović, O., Pastar, I., Rabach, M., Krzyzanowska, A., Lebrun, E., Davis, S. C., Resnik, S., Brem, H., Tomic-Canic, M. (2011). Cortisol synthesis in epidermis is induced by IL-1 and tissue injury. Journal of Biological Chemistry, 286 (12), 10265-10275. https://doi.org/10.1074/jbc.m110.188268
  • Waibel, J., Wulkan, A., and Shumaker, P. (2013). Treatment of hypertrophic scars using laser and laser assisted corticosteroid delivery. Lasers in Surgery and Medicine, 45(3), 135-140. https://doi.org/10.1002/lsm.22120
  • Walther, M., Vestweber, P. K., Kühn, S., Rieger, U. M., Schäfer, J., Münch, C., … and Windbergs, M. (2022). Bioactive insulin-loaded electrospun wound dressings for localized drug delivery and stimulation of protein expression associated with wound healing. Molecular Pharmaceutics, 20(1), 241-254. https://doi.org/10.1021/acs.molpharmaceut.2c00610
  • Wang, P., Shu, B., Xu, Y., Zhu, J., Liu, J., Zhou, Z., Chen, L., Zhao, J., Liu, X., Qi, S., Xiong, K., Xie, J. (2017). Basic fibroblast growth factor reduces scar by inhibiting the differentiation of epidermal stem cells to myofibroblasts via the notch1/jagged1 pathway. Stem Cell Research & Therapy, 8(1), 1-13. https://doi.org/10.1186/s13287-017-0549-7
  • Wang, L., Yang, J., Ran, B., Yang, X., Zheng, W., Long, Y., Jiang, X. (2017). Small molecular tgf-β1-inhibitor-loaded electrospun fibrous scaffolds for preventing hypertrophic scars. Acs Applied Materials & Interfaces, 9(38), 32545-32553. https://doi.org/10.1021/acsami.7b09796
  • Wang, Wei, Yang, C., Wang, X. Y., Zhou, L., Lao, G., Liu, D., Wang, C., Hu, M., Zeng, T., Yan, L., Ren, M. (2018). Microrna-129 and -335 promote diabetic wound healing by inhibiting SP1-mediated MMP-9 expression. Diabetes 67 (8), 1627-1638. https://doi.org/10.2337/db17-1238
  • Wang, H., Guo, B., Lin, S., Chang, P., Tao, K. (2019). Apigenin inhibits growth and migration of fibroblasts by suppressing fak signaling. Aging, 11(11), 3668-3678. https://doi.org/10.18632/aging.102006
  • Wang, J., Liao, Y., Xia, J., Wang, Z., Mo, X., Feng, J., Cai, J. (2019). Mechanical micronization of lipoaspirates for the treatment of hypertrophic scars. Stem Cell Research & Therapy, 10(1). https://doi.org/10.1186/s13287-019-1140-1
  • Wang, Z., Zhao, W., Cao, Y., Liu, Y., Sun, Q., Shi, P., Cai, J., Shen, X., Tan, W. (2020). The roles of inflammation in keloid and hypertrophic scars. Frontiers in Immunology, 11, 1-10. https://doi.org/10.3389/fimmu.2020.603187
  • Wang, J., Wu, H., Peng, Y., Zhao, Y., Qin, Y., Zhang, Y., Xiao, Z. (2021). Hypoxia adipose stem cell-derived exosomes promote high-quality healing of diabetic wound involves activation of pi3k/akt pathways. Journal of Nanobiotechnology, 19(1), 1-13. https://doi.org/10.1186/s12951-021-00942-0
  • Fu, X., Wu, J. (2022). The clinical effectiveness and safety of using epidermal growth factor, fibroblast growth factor and granulocyte-macrophage colony stimulating factor as therapeutics in acute skin wound healing: a systematic review and meta-analysis. Burns &Amp; Trauma, 10. https://doi.org/10.1093/burnst/tkac002
  • Wihastyoko, H. and Wuryanjono, W. (2022). The effectiveness of intradermal suture technique on hypertrophic scar prevention in rats. Jurnal Plastik Rekonstruksi, 9(1), 24-29. https://doi.org/10.14228/jprjournal.v9i1.335
  • Williams, F., Herndon, D., Branski, L. (2014). Where we stand with human hypertrophic and keloid scar models. Experimental Dermatology, 23(11), 811-812. https://doi.org/10.1111/exd.12506
  • Wong, V., Paterno, J., Sorkin, M., Glotzbach, J., Levi, K., Januszyk, M., Rustad, K. C., Longaker, M. D., Gurtner, G. (2011). Mechanical force prolongs acute inflammationviat‐cell‐dependent pathways during scar formation. The Faseb Journal, 25(12), 4498-4510. https://doi.org/10.1096/fj.10-178087
  • Wong, V., Beasley, B., Zepeda, J., Dauskardt, R., Yock, P., Longaker, M., Gurtner, G. (2013). A mechanomodulatory device to minimize incisional scar formation. Advances in Wound Care, 2(4), 185-194. https://doi.org/10.1089/wound.2012.0396
  • Wu, J., Duca, E., Espino, M., Gontzes, A., Cueto, I., Zhang, N., … and Guttman‐Yassky, E. (2020). Rna sequencing keloid transcriptome associates keloids with th2, th1, th17/th22, and jak3-skewing. Frontiers in Immunology, 11, 1-11. https://doi.org/10.3389/fimmu.2020.597741
  • Xiao, Y., Fan, P., Lei, S., Qi, M., Yang, X. (2015). Mir‐138/peroxisome proliferator‐activated receptor β signaling regulates human hypertrophic scar fibroblast proliferation and movement in vitro. The Journal of Dermatology, 42(5), 485-495. https://doi.org/10.1111/1346-8138.12792
  • Xiao, Y., Xu, D., Song, H., Shu, F., Pei, W., Yang, X., … and Xia, Z. (2019). Cuprous oxide nanoparticles reduces hypertrophic scarring by inducing fibroblast apoptosis. International Journal of Nanomedicine, Volume 14, 5989-6000. https://doi.org/10.2147/ijn.s196794
  • Xu, J., Zhao, W., Fang, Q., Zhang, D., Hu, Y., Zheng, B., Tan, W. (2020). Co-transfection of hepatocyte growth factor and truncated tgf-β type ii receptor inhibit scar formation. Brazilian Journal of Medical and Biological Research, 53(1), 1-6. https://doi.org/10.1590/1414-431x20199144
  • Yang, R., Qi, S., Shu, B., Ruan, S., Lin, Z., Yang, L., Shen, R., Zhang, F., Chen, X., Xie, J. (2016). Epidermal stem cells (escs) accelerate diabetic wound healing via the notch signalling pathway. Bioscience Reports, 36(4), 1-7. https://doi.org/10.1042/bsr20160034
  • Yang, Bingxian, Yuxin Zheng, Binjun Yan, Hua-Li Cao, Lilla Landeck, Jiaqi Chen, Wei Li et al., 2020. "Suppressor of fused inhibits skin wound healing", Advances in Wound Care(5), 9:233-244. https://doi.org/10.1089/wound.2018.0890
  • Yang, D., Li, M., Du, N. (2020). Effects of the circ_101238/mir 138 5p/CDK6 axis on proliferation and apoptosis keloid fibroblasts. Experimental and Therapeutic Medicine, 1995-2002. https://doi.org/10.3892/etm.2020.8917 Yannas, I., Tzeranis, D., So, P. (2017). Regeneration of injured skin and peripheral nerves requires control of wound contraction, not scar formation. Wound Repair and Regeneration, 25(2), 177-191. https://doi.org/10.1111/wrr.12516
  • Yun, I., Kang, E., Ahn, H., Kim, Y., Rah, D., Roh, T., Yun, C. (2019). Effect of relaxin expression from an alginate gel-encapsulated adenovirus on scar remodeling in a pig model. Yonsei Medical Journal, 60(9), 854. https://doi.org/10.3349/ymj.2019.60.9.854
  • Yuniati, R., Subchan, P., Riawan, W., Khrisna, M., Restiwijaya, M., Kusumaningrum, N., Nur, M. (2021). Topical ozonated virgin coconut oil improves wound healing and increases HSP90α, VEGF-A, EGF, BFGF and CD34 in diabetic ulcer mouse model of wound healing. F1000research, 9, 580. https://doi.org/10.12688/f1000research.22525.2
  • Zhang, J., Guan, M., Xie, C., Luo, X., Zhang, Q., Xue, Y. (2014). Increased growth factors play a role in wound healing promoted by noninvasive oxygen-ozone therapy in diabetic patients with foot ulcers. Oxidative Medicine and Cellular Longevity, 2014, 1-8. https://doi.org/10.1155/2014/273475
  • Zhang, X., Kang, X., Jin, L., Bai, J., Liu, W., and Wang, Z. (2018). Stimulation of wound healing using bioinspired hydrogels with basic fibroblast growth factor (bfgf). International Journal of Nanomedicine, Volume 13, 3897-3906. https://doi.org/10.2147/ijn.s168998
  • Zhang, Z., Chen, J., Huang, J., Yan, W., Zhang, Y., Chen, X. (2018). Experimental study of 5-fluorouracil encapsulated ethosomes combined with co2 fractional laser to treat hypertrophic scar. Nanoscale Research Letters, 13(1), 1-12. https://doi.org/10.1186/s11671-017-2425-x
  • Zhang, Y., Liu, Y., Cai, B., Luo, C., Li, D., Wang, S., Luo, S. (2019). Improvement of surgical scars by early intervention with carbon dioxide fractional laser. Lasers in Surgery and Medicine, 52(2), 137-148. https://doi.org/10.1002/lsm.23129
  • Zhai, X., Tang, Z., Ding, J., Lu, X. (2017). Expression of tgf-β1/mtor signaling pathway in pathological scar fibroblasts. Molecular Medicine Reports, 15(6), 3467-3472. https://doi.org/10.3892/mmr.2017.6437
  • Zhao, W., Zhang, H., Li, R., Cui, R. (2023). Advances in immunomodulatory mechanisms of mesenchymal stem cells-derived exosome on immune cells in scar formation. International Journal of Nanomedicine, Volume 18, 3643-3662. https://doi.org/10.2147/ijn.s412717

SKAR OLUŞUMUNUN MOLEKÜLER MEKANİZMASİ, TÜRLERİ VE TEDAVİSİ

Yıl 2024, Cilt: 7 Sayı: 3, 223 - 247
https://doi.org/10.52538/iduhes.1590063

Öz

Yara iyileşmesi ve skar oluşumu, hasara yanıt olarak hücre dışı matris bileşenlerinin birikmesi ve fibroblastların çoğalmasıyla karakterize karmaşık bir biyolojik süreçtir. Yara iyileşmesinin ve sonrasında oluşan skar oluşumunun altında yatan mekanizmaları, hipertrofik skar ve keloid gibi skar tiplerine bağlı olarak önemli ölçüde değişebilmekte ve çeşitli hücresel ve moleküler faktörlerden etkilenmektedir. Fibroblastların farklılaşmış bir formu olan miyofibroblastlar, kasılma özellikleri ve büyük miktarda kolajen ve diğer hücre dışı matris bileşenleri üretme kabiliyetleri nedeniyle yara iyileşmesinde ve skar oluşumunda önemli bir rol oynarlar.
Skar oluşum süreci fibroblastlar, makrofajlar ve endotel hücreleri gibi çeşitli hücre tipleri ile hücre dışı matris bileşenleri arasındaki karmaşık etkileşimleri içerir. Bu mekanizmaların anlaşılması, hipertrofik skar ve keloid gibi patolojik skarları en aza indirmeye yönelik tedavi stratejileri geliştirmek için çok önemlidir.
Skar oluşumunun ilk evresinde, iyileşme sürecinin ilk aşaması olan inflamasyon mekanizması başlar. Özellikle makrofajlar olmak üzere inflamatuar hücreler, yara iyileşmesinin düzenlenmesinde önemli bir rol oynarlar. Fibroblastlar, kollajen de dahil olmak üzere ekstraselüler matriks bileşenlerinin sentezlenmesinden sorumlu olan, skar oluşumunda birincil etkili hücrelerdir.
Skarlar, özelliklerine, altta yatan mekanizmalarına ve klinik görünümlerine göre çeşitli türlere ayrılabilir. En sık tartışılan iki tür hipertrofik skar ve keloiddir, ancak atrofik skar, kontraktür skar ve akne skarı da görülebilir ve her biri tedavi için farklı özelliklere sahiptir.
Bu çalışmanın amacı skar oluşumunun moleküler mekanizmasını, tiplerini ve tedavisini açıklamaktır.

Kaynakça

  • Agarwal, N., Gupta, L., Khare, A. K., Kuldeep, C. M., Mittal, A. (2015). Therapeutic response of 70% trichloroacetic acid cross in atrophic acne scars. Dermatologic Surgery, 41(5), 597-604. https://doi.org/10.1097/dss.0000000000000355
  • Al-Marzouqi, H., Nagy, E., Sair, M., and Mabrouk, A. (2022). The efficacy of low energy fractional carbon dioxide laser therapy in management of post-surgical hypertrophic scars. The Egyptian Journal of Plastic and Reconstructive Surgery, 46(3), 231-238. https://doi.org/10.21608/ejprs.2022.254701
  • Aydoğmuş, S., Kelekci, K., Şengül, M., Demirel, E., Karaca, Ş., Desdicioğlu, R., Kelekci, S. (2017). Factors affecting the development of scar formation in abdominal surgery performed for gynecologic and obstetric conditions. Turkderm, 51(1), 12-17. https://doi.org/10.4274/turkderm.58751
  • Batool, Z., Muhammad, G., Iqbal, M., Aslam, M., Raza, M., Sajjad, N., Abdullah, M., Akhtar, N., Syed, A., Elgorban, A., Al-Rejaie, S., Shafiq, Z. (2022). Hydrogel assisted synthesis of gold nanoparticles with enhanced microbicidal and in vivo wound healing potential. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-10495-3
  • Bikash, C. and Sarkar, R. (2023). Topical management of acne scars: the uncharted terrain. Journal of Cosmetic Dermatology, 22(4), 1191-1196. https://doi.org/10.1111/jocd.15584
  • Bitar, M. and Al-Mulla, F. (2012). ROS constitute a convergence nexus in the development of igf1 resistance and impaired wound healing in a rat model of type 2 diabetes. Disease Models and Mechanisms, 5(3), 375-388. https://doi.org/10.1242/dmm.007872
  • Butzelaar, L., Niessen, F., Talhout, W., Schooneman, D., Ulrich, M., Beelen, R., … and Molen, A. (2017). Different properties of skin of different body sites: the root of keloid formation?. Wound Repair and Regeneration, 25(5), 758-766. https://doi.org/10.1111/wrr.12574
  • Chanprapaph, K., Tanrattanakorn, S., Wattanakrai, P., Wongkitisophon, P., and Vachiramon, V. (2012). Effectiveness of onion extract gel on surgical scars in asians. Dermatology Research and Practice, 2012, 1-6. https://doi.org/10.1155/2012/212945
  • Choi, J., Jun, J. H., Kim, J. H., Sung, H. J., Lee, J. H. (2014). Synergistic effect of interleukin-6 and hyaluronic acid on cell migration and erk activation in human keratinocytes. Journal of Korean Medical Science (Suppl 3), 29, 210-126. https://doi.org/10.3346/jkms.2014.29.s3.s210
  • Choi, Y. S., Khan, G., Nam, S. M., Park, E. S. (2018). Successful treatment of post-traumatic elbow scar contracture using combined approach of surgical release & early fractional laser resurfacing. Medical Lasers, 7(1), 32-37. https://doi.org/10.25289/ml.2018.7.1.32
  • Darby, I. and Desmoulière, A. (2020). Scar formation: cellular mechanisms., 19-26. https://doi.org/10.1007/978-3-030-44766-3_3
  • Deng, X., Chen, Q., Qiang, L., Chi, M., Xie, N., Wu, Y., Yao, M., Zhao, D., Ma, J., Zhang, N., Xie, Y. (2018). Development of a porcine full-thickness burn hypertrophic scar model and investigation of the effects of shikonin on hypertrophic scar remediation. Frontiers in Pharmacology, 9, 1-12. https://doi.org/10.3389/fphar.2018.00590
  • Deng, X., Zhao, F., Zhao, D., Zhang, Q., Zhu, Y., Chen, Q., Xie, Y. (2021). Oxymatrine promotes hypertrophic scar repair through reduced human scar fibroblast viability, collagen and induced apoptosis via autophagy inhibition. International Wound Journal, 19(5), 1221-1231. https://doi.org/10.1111/iwj.13717
  • Donovan, J., Xu, S., Norman, J., Abraham, D. (2013). Platelet-derived growth factor alpha and beta receptors have overlapping functional activities towards fibroblasts. Fibrogenesis & Tissue Repair, 6(1), 1-9. https://doi.org/10.1186/1755-1536-6-10
  • Duan, M., Zhang, Y., Zhang, H., Meng, Y., Qian, M., Zhang, G. (2020). Epidermal stem cell-derived exosomes promote skin regeneration by downregulating transforming growth factor-β1 in wound healing. Stem Cell Research & Therapy, 11(1), 1-11. https://doi.org/10.1186/s13287-020-01971-6
  • Dwivedi, C., Pandey, H., Pandey, A., Patil, S., Ramteke, P., Laux, P., Luch, A., Singh, A. (2019). In vivo biocompatibility of electrospun biodegradable dual carrier (antibiotic + growth factor) in a mouse model—implications for rapid wound healing. Pharmaceutics, 11(4), 1-19. https://doi.org/10.3390/pharmaceutics11040180
  • Ebrahiminaseri, A., Sadeghizadeh, M., Moshaii, A., Asgaritarghi, G., and Safari, Z. (2021). Combination treatment of dendrosomal nanocurcumin and low-level laser therapy develops proliferation and migration of mouse embryonic fibroblasts and alter tgf-β, vegf, tnf-α and il-6 expressions involved in wound healing process. Plos One, 16(5), 1-23. e0247098. https://doi.org/10.1371/journal.pone.0247098
  • Eisendle, K., Pichler, M., Luca, J., Thuile, T. (2019). Use of self‐adherent silicone sheets in a pediatric burn patient: a case report and instructions for use. Pediatric Dermatology, 37(1), 257-260. https://doi.org/10.1111/pde.14017
  • El‐Tahlawi, S. and Mohamed, B. (2023). Intralesional triamcinolone acetonide in the treatment of keloids and hypertrophic scars. Fayoum University Medical Journal, 11(1), 49-55. https://doi.org/10.21608/fumj.2023.278472
  • Fabbrocini, G., Annunziata, M., D'Arco, V., Vita, V., Lodi, G., Mauriello, M., Monfrecola, G. (2010). Acne scars: pathogenesis, classification and treatment. Dermatology Research and Practice, 2010(1), 1-13. https://doi.org/10.1155/2010/893080
  • Feng, Y., Sun, Z., Liu, S., Wu, J., Zhao, B., Lv, G., Zhou, X. (2019). Direct and indirect roles of macrophages in hypertrophic scar formation. Frontiers in Physiology, 10, 1-7. https://doi.org/10.3389/fphys.2019.01101
  • Finnerty, C., Jeschke, M., Branski, L., Barret, J., Dziewulski, P., Herndon, D. (2016). Hypertrophic scarring: the greatest unmet challenge after burn injury. The Lancet, 388(10052), 1427-1436. https://doi.org/10.1016/s0140-6736(16)31406-4
  • Gauglitz, G. (2013). Management of keloids and hypertrophic scars: current and emerging options. Clinical Cosmetic and Investigational Dermatology, 103. https://doi.org/10.2147/ccid.s35252
  • Gaur, N. (2018). A comparative analysis of carbon dioxide laser technique and derma roller therapy in post-acne scars patients. International Journal of Surgery Science, 2(1), 48-50. https://doi.org/10.33545/surgery.2018.v2.i1a.888
  • Gisquet, H., Liu, H., Blondel, W., Leroux, A., Latarche, C., Merlin, J., Guillemin, F. (2011). Intradermal tacrolimus prevent scar hypertrophy in a rabbit ear model: a clinical, histological and spectroscopical analysis. Skin Research and Technology, 17(2), 160-166. https://doi.org/10.1111/j.1600-0846.2010.00479.x
  • Guan, Y., Niu, H., Liu, Z., Dang, Y., Shen, J., Zayed, M., Ma, L., Guan, J. (2021). Sustained oxygenation accelerates diabetic wound healing by promoting epithelialization and angiogenesis and decreasing inflammation. Science Advances 7(35), 1-14. https://doi.org/10.1126/sciadv.abj0153
  • Gurtner, G., Dauskardt, R., Wong, V., Bhatt, K., Wu, K., Vial, I., Longaker, M. (2011). Improving cutaneous scar formation by controlling the mechanical environment. Annals of Surgery Open, 254(2), 217-225. https://doi.org/10.1097/sla.0b013e318220b159
  • Hahn, J., Glaser, K., McFarland, K., Aronow, B., Boyce, S., Supp, D. (2013). Keloid‐derived keratinocytes exhibit an abnormal gene expression profile consistent with a distinct causal role in keloid pathology. Wound Repair and Regeneration, 21(4), 530-544. https://doi.org/10.1111/wrr.12060
  • He, T., Bai, X., Yang, L., Fan, L., Li, Y., Su, L., Gao, J., Han, S., Hu, D. (2015). Loureirin b inhibits hypertrophic scar formation via inhibition of the tgf-β1-erk/jnk pathway. Cellular Physiology and Biochemistry, 37(2), 666-676. https://doi.org/10.1159/000430385
  • He, Y., Deng, Z., Alghamdi, M., Lü, L., Fear, M., and He, L. (2017). From genetics to epigenetics: new insights into keloid scarring. Cell Proliferation, 50(2), 1-8. https://doi.org/10.1111/cpr.12326
  • He, J., Fang, B., Shan, S., Xie, Y., Wang, C., Zhang, Y., Zhang, X., Li, Q. (2021). Mechanical stretch promotes hypertrophic scar formation through mechanically activated cation channel piezo1. Cell Death and Disease, 12(3), 1-13. https://doi.org/10.1038/s41419-021-03481-6
  • Hesketh, M., Sahin, K., West, Z., Murray, R. (2017). Macrophage phenotypes regulate scar formation and chronic wound healing. International Journal of Molecular Sciences, 18(7), 1-10. https://doi.org/10.3390/ijms18071545
  • Hsiao, C., Cheng, H. W., Huang, C. M., Li, H. R., Ou, M. H., Huang, J. R., Khoo, K., Yu, W. H., Chen, Y., Wang, Y., Chiou, A., Kuo, J. (2017). Fibronectin in cell adhesion and migration via n-glycosylation. Oncotarget 8(41), 70653-70668. https://doi.org/10.18632/oncotarget.19969
  • Hu, Z., Tang, B., Guo, D., Zhang, J., Liang, Y., Ma, D., Zhu, J. (2014). Expression of insulin‐like growth factor‐1 receptor in keloid and hypertrophic scar. Clinical and Experimental Dermatology, 39(7), 822-828. https://doi.org/10.1111/ced.12407
  • Huang, C., Murphy, G., Akaishi, S., Ogawa, R. (2013). Keloids and hypertrophic scars. Plastic and Reconstructive Surgery Global Open, 1(4), e25. https://doi.org/10.1097/gox.0b013e31829c4597
  • Huang, L., Chen, D., Xu, Q., Zheng, Z., Dai, X. (2020). The use of the scar cosmesis assessment and rating scale to evaluate the cosmetic outcomes of totally thoracoscopic cardiac surgery. Journal of Cardiothoracic Surgery, 15(1). https://doi.org/10.1186/s13019-020-01294-w
  • Hunasgi, S., Koneru, A., Vanishree, M., Ravikumar, S. (2013). Keloid: a case report and review of pathophysiology and differences between keloid and hypertrophic scars. Journal of Oral and Maxillofacial Pathology, 17(1), 116. https://doi.org/10.4103/0973-029x.110701
  • Igarashi, J., Fukuda, N., Inoue, T., Nakai, S., Saito, K., Fujiwara, K., Soma, M. (2015). Preclinical study of novel gene silencer pyrrole-imidazole polyamide targeting human tgf-β1 promoter for hypertrophic scars in a common marmoset primate model. Plos One, 10(5), e0125295. https://doi.org/10.1371/journal.pone.0125295
  • İnan, Z., Saraydın, S. (2013). Investigation of the wound healing effects of chitosan on FGFR3 and VEGF immunlocalization in experimentally diabetic rats. International Journal of Biomedical Materials Research, 1(1), 1-8. https://doi.org/10.11648/j.ijbmr.20130101.11
  • Jin, J., Zhai, H., Jia, Z., and Luo, X. (2019). Long non-coding rna hoxa11-as induces type I collagen synthesis to stimulate keloid formation via sponging mir-124-3p and activation of smad5 signaling. Ajp Cell Physiology, 317(5), C1001-C1010. https://doi.org/10.1152/ajpcell.00319.2018
  • Kauvar, A., Kubicki, S., Suggs, A., Friedman, P. (2019). Laser therapy of traumatic and surgical scars and an algorithm for their treatment. Lasers in Surgery and Medicine, 52(2), 125-136. https://doi.org/10.1002/lsm.23171
  • Kieran, I., Knock, A., Bush, J., So, K., Metcalfe, A., Hobson, R., Ferguson, M. (2013). Interleukin‐10 reduces scar formation in both animal and human cutaneous wounds: results of two preclinical and phase ii randomized control studies. Wound Repair and Regeneration, 21(3), 428-436. https://doi.org/10.1111/wrr.12043
  • Kim, D., Ryu, H., Choi, J., Ahn, H., Kye, Y., and Seo, S. (2014). A comparison of the scar prevention effect between carbon dioxide fractional laser and pulsed dye laser in surgical scars. Dermatologic Surgery, 40(9), 973-978. https://doi.org/10.1097/01.dss.0000452623.24760.9c
  • Kim, S., Lee, S., Yi, S., Jun, S., Yi, Y., Nagar, H., Oh, S. (2021). Tauroursodeoxycholic acid decreases keloid formation by reducing endoplasmic reticulum stress as implicated in the pathogenesis of keloid. International Journal of Molecular Sciences, 22(19), 10765. https://doi.org/10.3390/ijms221910765
  • Kravvas, G. and Al‐Niaimi, F. (2017). A systematic review of treatments for acne scarring. part 1: non-energy-based techniques. Scars Burns & Healing, 3, 1-17. https://doi.org/10.1177/2059513117695312
  • Kwak, D., Bae, T., Kim, W., Kim, H. (2016). Anti-vascular endothelial growth factor (bevacizumab) therapy reduces hypertrophic scar formation in a rabbit ear wounding model. Archives of Plastic Surgery, 43(06), 491-497. https://doi.org/10.5999/aps.2016.43.6.491
  • Krakowski, A., Goldenberg, A., Eichenfield, L., Murray, J., Shumaker, P. (2014). Ablative fractional laser resurfacing helps treat restrictive pediatric scar contractures. Pediatrics, 134(6), e1700-e1705. https://doi.org/10.1542/peds.2014-1586
  • Lee, S., Zheng, Z., and Roh, M. (2013). Early postoperative treatment of surgical scars using a fractional carbon dioxide laser: a split-scar, evaluator-blinded study. Dermatologic Surgery, 39(8), 1190-1196. https://doi.org/10.1111/dsu.12228
  • Li, P., He, Q., and Luo, C. (2014). Overexpression of mir‐200b inhibits the cell proliferation and promotes apoptosis of human hypertrophic scar fibroblastsin vitro. The Journal of Dermatology, 41(10), 903-911. https://doi.org/10.1111/1346-8138.12600
  • Li, P., Li, H., Zhong, L., Sun, Y., Liu, Y., Wu, M., Zhang, L., Kong, Q., Wang, S., Lv, C. (2015). Molecular events underlying maggot extract promoted rat in vivo and human in vitro skin wound healing. Wound Repair and Regeneration 23 (1), 65-73. https://doi.org/10.1111/wrr.12243
  • Li, J., Chen, L., Cao, C., Yan, H., Zhou, B., Gao, Y., Li, J. (2016). The long non-coding rna lncrna8975-1 is upregulated in hypertrophic scar fibroblasts and controls collagen expression. Cellular Physiology and Biochemistry, 40(1-2), 326-334. https://doi.org/10.1159/000452548
  • Li, X., Guo, L., Yang, X., Wang, J., Hou, Y., Zhu, S., Liu, Y. (2019). Tgf‐β1‐induced connexin43 promotes scar formation via the erk/mmp‐1/collagen iii pathway. Journal of Oral Rehabilitation, 47(S1), 99-106. https://doi.org/10.1111/joor.12829
  • Li, K., Nicoli, F., Cui, C., Xi, W., Al-Mousawi, A., Zhang, Z., Zhang, Y. (2020). Treatment of hypertrophic scars and keloids using an intralesional 1470 nm bare-fibre diode laser: a novel efficient minimally-invasive technique. Scientific Reports, 10(1), 1-11. https://doi.org/10.1038/s41598-020-78738-9
  • Li, S., Li, Y., Wu, Z., Wu, Z., and Fang, H. (2021). Diabetic ferroptosis plays an important role in triggering on inflammation in diabetic wound. Ajp Endocrinology and Metabolism, 321(4), E509-E520. https://doi.org/10.1152/ajpendo.00042.2021
  • Li, M. (2023). Inhibition of proliferation, migration, and invasion of keloid fibroblasts by mir-183-5p through downregulating egr1. International Journal of Morphology, 41(6), 1610-1619. https://doi.org/10.4067/s0717-95022023000601610
  • Limandjaja, G., Niessen, F., Scheper, R., Gibbs, S. (2020). Hypertrophic scars and keloids: overview of the evidence and practical guide for differentiating between these abnormal scars. Experimental Dermatology, 30(1), 146-161. https://doi.org/10.1111/exd.14121
  • Ma, L., Gan, C., Huang, Y., Wang, Y., Luo, G., Wu, J. (2014). Comparative proteomic analysis of extracellular matrix proteins secreted by hypertrophic scar with normal skin fibroblasts. Burns & Trauma, 2(2), 76-83. https://doi.org/10.4103/2321-3868.130191
  • Ma, F., Shen, J., Zhang, H., Zhang, Z., Yang, A., Xiong, J., Jiang, Y. (2022). A novel lncrna fpasl regulates fibroblast proliferation via the pi3k/akt and mapk signaling pathways in hypertrophic scar. Acta Biochimica Et Biophysica Sinica, 274-284. https://doi.org/10.3724/abbs.2022122
  • Makwana, J., Vora, D., Soyal, V. (2022). A comparative study of efficacy of fractional co2 laser vs microdermabrasion in treatment of acne scars (total 100 patients). International Journal of Research and Review, 9(1), 34-38. https://doi.org/10.52403/ijrr.20220105
  • Masi, E., Campos, A., Masi, F., Ratti, M., Ike, I., Masi, R. (2016). The influence of growth factors on skin wound healing in rats. Brazilian Journal of Otorhinolaryngology, 82(5), 512-521. https://doi.org/10.1016/j.bjorl.2015.09.011
  • Medyukhina, A., Vogler, N., Latka, I., Kemper, S., Böhm, M., Dietzek, B., Popp, J. (2011). Automated classification of healthy and keloidal collagen patterns based on processing of shg images of human skin. Journal of Biophotonics, 4(9), 627-636. https://doi.org/10.1002/jbio.201100028
  • Mohammadi, A. A., Parand, A., Kardeh, S., Janati, M., and Mohammadi, S. (2018). Efficacy of topical enalapril in treatment of hypertrophic scars. World Journal of Plastic Surgery, 7(3), 326-331. https://doi.org/10.29252/wjps.7.3.326
  • Morris, M., Allukian, M., Herdrich, B., Caskey, R., Zgheib, C., Xu, J., Liechty, K. (2014). Modulation of the inflammatory response by increasing fetal wound size or interleukin‐10 overexpression determines wound phenotype and scar formation. Wound Repair and Regeneration, 22(3), 406-414. https://doi.org/10.1111/wrr.12180
  • Moura, J., Sørensen, A. E., Leal, E. C., Svendsen, R. P., Carvalho, L., Willemoes, R. J., Jorgensen, P. T., Jenssen, H., Wengel, J., Dalgaard, R. T., Carvalho, E. (2019). Microrna-155 inhibition restores fibroblast growth factor 7 expression in diabetic skin and decreases wound inflammation. Scientific Reports, 9(1), 1-11. https://doi.org/10.1038/s41598-019-42309-4
  • Natallya, F., Herwanto, N., Prakoeswa, C., Indramaya, D., Rantam, F. (2019). Effective healing of leprosy chronic plantar ulcers by application of human amniotic membrane stem cell secretome gel. Indian Journal of Dermatology, 64(3), 250. https://doi.org/10.4103/ijd.ijd_6_17
  • Niederstätter, I., Schiefer, J., and Fuchs, P. (2021). Surgical strategies to promote cutaneous healing. Medical Sciences, 9(2), 45. https://doi.org/10.3390/medsci9020045
  • Noh, K., Liu, X., Zhong, Z., Yang, C., Kim, Y., Lee, G., Choi, K., Kim, K. (2018). Leukocyte-poor platelet-rich plasma-derived growth factors enhance human fibroblast proliferation in vitro. Clinics in Orthopedic Surgery, 10(2), 240-247. https://doi.org/10.4055/cios.2018.10.2.240
  • Ogawa, R., Okai, K., Tokumura, F., Mori, K., Ohmori, Y., Huang, C., Hyakusoku, H., Akaishi, S. (2012). The relationship between skin stretching/contraction and pathologic scarring: the important role of mechanical forces in keloid generation. Wound Repair and Regeneration, 20(2), 149-157. https://doi.org/10.1111/j.1524-475x.2012.00766.x
  • On, H., Lee, S., Lee, Y., Chang, H., Park, C., Roh, M. (2015). Evaluating hypertrophic thyroidectomy scar outcomes after treatment with triamcinolone injections and copper bromide laser therapy. Lasers in Surgery and Medicine, 47(6), 479-484. https://doi.org/10.1002/lsm.22375
  • Ong, C., Khoo, Y., Mukhopadhyay, A., Masilamani, J., Do, D., Lim, I., Phan, T. (2010). Comparative proteomic analysis between normal skin and keloid scar. British Journal of Dermatology, 162(6), 1302-1315. https://doi.org/10.1111/j.1365-2133.2010.09660.x
  • Palumbo, V., Rizzuto, S., Damiano, G., Fazzotta, S., Gottardo, A., Mazzola, G., Monte, A. (2021). Use of platelet concentrate gel in second-intention wound healing: a case report. Journal of Medical Case Reports, 15(1), 1-7. https://doi.org/10.1186/s13256-020-02649-6
  • Park, T. H., Seo, S. W., Kim, J. K., Chang, C. H. (2011). Management of chest keloids. Journal of Cardiothoracic Surgery, 6(1). https://doi.org/10.1186/1749-8090-6-49
  • Perdanasari, A., Torresetti, M., Grassetti, L., Nicoli, F., Zhang, Y., Dashti, T., Lazzeri, D. (2015). Intralesional injection treatment of hypertrophic scars and keloids: a systematic review regarding outcomes. Burns & Trauma, 3. https://doi.org/10.1186/s41038-015-0015-7
  • Pradhan, M. (2023). The molecular mechanisms involved in the hypertrophic scars post-burn injury. The Yale Journal of Biology and Medicine, 96(4), 549-563. https://doi.org/10.59249/rhuf5686
  • Prakoeswa, C., Rindiastuti, Y., Wirohadidjojo, Y., Komaratih, E., Dinaryati, A., Lestari, N., Rantam, F. (2020). Resveratrol promotes secretion of wound healing related growth factors of mesenchymal stem cells originated from adult and fetal tissues. Artificial Cells Nanomedicine and Biotechnology, 48(1), 1159-1166. https://doi.org/10.1080/21691401.2020.1817057
  • Qi, W., Yang, C., Dai, Z., Che, D., Feng, J., Mao, Y., Cheng, R., Wang, Z., He, X., Zhou, T., Gu, X., Yan, L., Yang, X., Ma, J., Gao, G. (2014). High levels of pigment epithelium–derived factor in diabetes impair wound healing through suppression of wnt signaling. Diabetes, 64(4), 1407-1419. https://doi.org/10.2337/db14-1111
  • Qin, Song, Xie, Y., Gou, Q., Guo, X., Qian, Y., Gou, X. (2017). JAK/STAT3 and Smad3 activities are required for the wound healing properties of Periplaneta americana extracts. International Journal of Molecular Medicine, 40 (2), 465-473. https://doi.org/10.3892/ijmm.2017.3040
  • Qiu, Y., Yang, S., Tan, J., Luo, G., Wang, H., Wu, J. (2015). Process of hypertrophic scar formation. Chinese Medical Journal, 128(20), 2787-2791. https://doi.org/10.4103/0366-6999.167359
  • Ren, Z., Hou, Y., Ma, S., Yang, T., Li, J., Cao, H., Ji, L. (2014). Effects of ccn3 on fibroblast proliferation, apoptosis and extracellular matrix production. International Journal of Molecular Medicine, 33(6), 1607-1612. https://doi.org/10.3892/ijmm.2014.1735
  • Rong, S., Li, C., Li, S., Wu, S., Sun, F. (2020). Genetically modified adipose‐derived stem cells with matrix metalloproteinase 3 promote scarless cutaneous repair. Dermatologic Therapy, 33(6), 1-8. https://doi.org/10.1111/dth.14112
  • Ruthenborg, R. J., Ban, J. J., Wazir, A., Takeda, N., Kim, J. (2014). Regulation of wound healing and fibrosis by hypoxia and hypoxia-inducible factor-1. Molecules and Cells 37(9), 637-643. https://doi.org/10.14348/molcells.2014.0150
  • Schouten, H., Nieuwenhuis, M., Schans, C., Niemeijer, A., Zuijlen, P. (2023). Considerations in determining the severity of burn scar contractures with focus on the knee joint. Journal of Burn Care & Research, 44(4), 810-816. https://doi.org/10.1093/jbcr/irad016
  • Seoudy, W., Dien, S., Reheem, T., Elfangary, M., Erfan, M. (2022). Macrophages of the m1 and m2 types play a role in keloids pathogenesis. International Wound Journal, 20(1), 38-45. https://doi.org/10.1111/iwj.13834
  • Sidgwick, G. and Bayat, A. (2011). Extracellular matrix molecules implicated in hypertrophic and keloid scarring. Journal of the European Academy of Dermatology and Venereology, 26(2), 141-152. https://doi.org/10.1111/j.1468-3083.2011.04200.x
  • Sidgwick, G. P., McGeorge, D., and Bayat, A. (2015). A comprehensive evidence-based review on the role of topicals and dressings in the management of skin scarring. Archives of Dermatological Research, 307(6), 461-477. https://doi.org/10.1007/s00403-015-1572-0
  • Shi, H., Lin, C., Lin, B., Wang, Z., Zhang, H., Wu, F., Xiao, J. (2013). The anti-scar effects of basic fibroblast growth factor on the wound repair in vitro and in vivo. Plos One, 8(4), 1-10e59966. https://doi.org/10.1371/journal.pone.0059966
  • Shibuya, Y., Okawa, H., Kondo, T., Khalil, D., Wang, L., Roca, Y., Jarrahy, R. (2022). Therapeutic downregulation of neuronal PAS domain 2 (npas2) promotes surgical skin wound healing. Elife, 11, 1-21. https://doi.org/10.7554/elife.71074
  • Shin, H., Suk, S., Chae, S., Yoon, K., Kim, J. (2021). Early postoperative treatment of mastectomy scars using a fractional carbon dioxide laser: a randomized, controlled, split-scar, blinded study. Archives of Plastic Surgery, 48(4), 347-352. https://doi.org/10.5999/aps.2020.02495
  • Shorka, D., Yemini, N., Shushan, G., Tokar, L., Benbenishty, J., and Woloski-Wruble, A. (2021). Body image and scar assessment: a longitudinal cohort analysis of cardiothoracic, neurosurgery and urology patients. Journal of Clinical Nursing, 31(17-18), 2605-2611. https://doi.org/10.1111/jocn.16083
  • Song, H., Tan, J., Fu, Q., Huang, L., Ao, M. (2018). Comparative efficacy of intralesional triamcinolone acetonide injection during early and static stage of pathological scarring. Journal of Cosmetic Dermatology, 18(3), 874-878. https://doi.org/10.1111/jocd.12690
  • Sun, M., He, Y., Zhou, T., Zhang, P., Gao, J., Lu, F. (2017). Adipose extracellular matrix/stromal vascular fraction gel secretes angiogenic factors and enhances skin wound healing in a murine model. Biomed Research International, 2017, 1-11. https://doi.org/10.1155/2017/3105780
  • Surakunprapha, P., Winaikosol, K., Chowchuen, B., Punyavong, P., Jenwitheesuk, K., and Jenwitheesuk, K. (2020). A prospective randomized double-blind study of silicone gel plus herbal extracts versus placebo in pre-sternal hypertrophic scar prevention and amelioration. Heliyon, 6(5), e03883. https://doi.org/10.1016/j.heliyon.2020.e03883
  • Suryanarayan, S., Budamakuntla, L., Khadri, S., and Sarvajnamurthy, S. (2014). Efficacy of autologous platelet-rich plasma in the treatment of chronic nonhealing leg ulcers. Plastic and Aesthetic Research, 1(2), 65-69. https://doi.org/10.4103/2347-9264.139703
  • Süntar, İ, Çetinkaya, S., Panieri, E., Saha, S., Buttari, B., Saso, L. (2021). Regulatory role of nrf2 signaling pathway in wound healing process. Molecules 26(9), 2424. https://doi.org/10.3390/molecules26092424
  • Takaya, K., Aramaki-Hattori, N., Sakai, S., Okabe, K., Asou, T., Kishi, K. (2022). Decorin inhibits dermal mesenchymal cell migration and induces scar formation. Plastic and Reconstructive Surgery Global Open, 10(4), e4245. https://doi.org/10.1097/gox.0000000000004245
  • Tan, J., Zhou, J., Huang, L., Fu, Q., Ao, M., Yuan, L., Luo, G. (2020). Hypertrophic scar improvement by early intervention with ablative fractional carbon dioxide laser treatment. Lasers in Surgery and Medicine, 53(4), 450-457. https://doi.org/10.1002/lsm.23301
  • Tan, Y., Zhang, M., Kong, Y., Zhang, F., Wang, Y., Huang, Y., Song, W., Li, Z., Hou, L., Liang, L., Guo, X., Liu, Q., Feng, Y., Zhang, C., Fu, X., Huang, S. (2023). Fibroblasts and endothelial cells interplay drives hypertrophic scar formation: insights from in vitro and in vivo models. Bioengineering & Translational Medicine, 9(2), 1-15. https://doi.org/10.1002/btm2.10630
  • Tripathi, S., Soni, K., Agrawal, P., Gour, V., Mondal, R., Soni, V. (2020). Hypertrophic scars and keloids: a review and current treatment modalities. Biomedical Dermatology, 4(1), 1-11. https://doi.org/10.1186/s41702-020-00063-8
  • Volk, S., Wang, Y., Mauldin, E., Liechty, K., Adams, S. (2011). Diminished type iii collagen promotes myofibroblast differentiation and increases scar deposition in cutaneous wound healing. Cells Tissues Organs, 194(1), 25-37. https://doi.org/10.1159/000322399
  • Vukelic, S., Stojadinović, O., Pastar, I., Rabach, M., Krzyzanowska, A., Lebrun, E., Davis, S. C., Resnik, S., Brem, H., Tomic-Canic, M. (2011). Cortisol synthesis in epidermis is induced by IL-1 and tissue injury. Journal of Biological Chemistry, 286 (12), 10265-10275. https://doi.org/10.1074/jbc.m110.188268
  • Waibel, J., Wulkan, A., and Shumaker, P. (2013). Treatment of hypertrophic scars using laser and laser assisted corticosteroid delivery. Lasers in Surgery and Medicine, 45(3), 135-140. https://doi.org/10.1002/lsm.22120
  • Walther, M., Vestweber, P. K., Kühn, S., Rieger, U. M., Schäfer, J., Münch, C., … and Windbergs, M. (2022). Bioactive insulin-loaded electrospun wound dressings for localized drug delivery and stimulation of protein expression associated with wound healing. Molecular Pharmaceutics, 20(1), 241-254. https://doi.org/10.1021/acs.molpharmaceut.2c00610
  • Wang, P., Shu, B., Xu, Y., Zhu, J., Liu, J., Zhou, Z., Chen, L., Zhao, J., Liu, X., Qi, S., Xiong, K., Xie, J. (2017). Basic fibroblast growth factor reduces scar by inhibiting the differentiation of epidermal stem cells to myofibroblasts via the notch1/jagged1 pathway. Stem Cell Research & Therapy, 8(1), 1-13. https://doi.org/10.1186/s13287-017-0549-7
  • Wang, L., Yang, J., Ran, B., Yang, X., Zheng, W., Long, Y., Jiang, X. (2017). Small molecular tgf-β1-inhibitor-loaded electrospun fibrous scaffolds for preventing hypertrophic scars. Acs Applied Materials & Interfaces, 9(38), 32545-32553. https://doi.org/10.1021/acsami.7b09796
  • Wang, Wei, Yang, C., Wang, X. Y., Zhou, L., Lao, G., Liu, D., Wang, C., Hu, M., Zeng, T., Yan, L., Ren, M. (2018). Microrna-129 and -335 promote diabetic wound healing by inhibiting SP1-mediated MMP-9 expression. Diabetes 67 (8), 1627-1638. https://doi.org/10.2337/db17-1238
  • Wang, H., Guo, B., Lin, S., Chang, P., Tao, K. (2019). Apigenin inhibits growth and migration of fibroblasts by suppressing fak signaling. Aging, 11(11), 3668-3678. https://doi.org/10.18632/aging.102006
  • Wang, J., Liao, Y., Xia, J., Wang, Z., Mo, X., Feng, J., Cai, J. (2019). Mechanical micronization of lipoaspirates for the treatment of hypertrophic scars. Stem Cell Research & Therapy, 10(1). https://doi.org/10.1186/s13287-019-1140-1
  • Wang, Z., Zhao, W., Cao, Y., Liu, Y., Sun, Q., Shi, P., Cai, J., Shen, X., Tan, W. (2020). The roles of inflammation in keloid and hypertrophic scars. Frontiers in Immunology, 11, 1-10. https://doi.org/10.3389/fimmu.2020.603187
  • Wang, J., Wu, H., Peng, Y., Zhao, Y., Qin, Y., Zhang, Y., Xiao, Z. (2021). Hypoxia adipose stem cell-derived exosomes promote high-quality healing of diabetic wound involves activation of pi3k/akt pathways. Journal of Nanobiotechnology, 19(1), 1-13. https://doi.org/10.1186/s12951-021-00942-0
  • Fu, X., Wu, J. (2022). The clinical effectiveness and safety of using epidermal growth factor, fibroblast growth factor and granulocyte-macrophage colony stimulating factor as therapeutics in acute skin wound healing: a systematic review and meta-analysis. Burns &Amp; Trauma, 10. https://doi.org/10.1093/burnst/tkac002
  • Wihastyoko, H. and Wuryanjono, W. (2022). The effectiveness of intradermal suture technique on hypertrophic scar prevention in rats. Jurnal Plastik Rekonstruksi, 9(1), 24-29. https://doi.org/10.14228/jprjournal.v9i1.335
  • Williams, F., Herndon, D., Branski, L. (2014). Where we stand with human hypertrophic and keloid scar models. Experimental Dermatology, 23(11), 811-812. https://doi.org/10.1111/exd.12506
  • Wong, V., Paterno, J., Sorkin, M., Glotzbach, J., Levi, K., Januszyk, M., Rustad, K. C., Longaker, M. D., Gurtner, G. (2011). Mechanical force prolongs acute inflammationviat‐cell‐dependent pathways during scar formation. The Faseb Journal, 25(12), 4498-4510. https://doi.org/10.1096/fj.10-178087
  • Wong, V., Beasley, B., Zepeda, J., Dauskardt, R., Yock, P., Longaker, M., Gurtner, G. (2013). A mechanomodulatory device to minimize incisional scar formation. Advances in Wound Care, 2(4), 185-194. https://doi.org/10.1089/wound.2012.0396
  • Wu, J., Duca, E., Espino, M., Gontzes, A., Cueto, I., Zhang, N., … and Guttman‐Yassky, E. (2020). Rna sequencing keloid transcriptome associates keloids with th2, th1, th17/th22, and jak3-skewing. Frontiers in Immunology, 11, 1-11. https://doi.org/10.3389/fimmu.2020.597741
  • Xiao, Y., Fan, P., Lei, S., Qi, M., Yang, X. (2015). Mir‐138/peroxisome proliferator‐activated receptor β signaling regulates human hypertrophic scar fibroblast proliferation and movement in vitro. The Journal of Dermatology, 42(5), 485-495. https://doi.org/10.1111/1346-8138.12792
  • Xiao, Y., Xu, D., Song, H., Shu, F., Pei, W., Yang, X., … and Xia, Z. (2019). Cuprous oxide nanoparticles reduces hypertrophic scarring by inducing fibroblast apoptosis. International Journal of Nanomedicine, Volume 14, 5989-6000. https://doi.org/10.2147/ijn.s196794
  • Xu, J., Zhao, W., Fang, Q., Zhang, D., Hu, Y., Zheng, B., Tan, W. (2020). Co-transfection of hepatocyte growth factor and truncated tgf-β type ii receptor inhibit scar formation. Brazilian Journal of Medical and Biological Research, 53(1), 1-6. https://doi.org/10.1590/1414-431x20199144
  • Yang, R., Qi, S., Shu, B., Ruan, S., Lin, Z., Yang, L., Shen, R., Zhang, F., Chen, X., Xie, J. (2016). Epidermal stem cells (escs) accelerate diabetic wound healing via the notch signalling pathway. Bioscience Reports, 36(4), 1-7. https://doi.org/10.1042/bsr20160034
  • Yang, Bingxian, Yuxin Zheng, Binjun Yan, Hua-Li Cao, Lilla Landeck, Jiaqi Chen, Wei Li et al., 2020. "Suppressor of fused inhibits skin wound healing", Advances in Wound Care(5), 9:233-244. https://doi.org/10.1089/wound.2018.0890
  • Yang, D., Li, M., Du, N. (2020). Effects of the circ_101238/mir 138 5p/CDK6 axis on proliferation and apoptosis keloid fibroblasts. Experimental and Therapeutic Medicine, 1995-2002. https://doi.org/10.3892/etm.2020.8917 Yannas, I., Tzeranis, D., So, P. (2017). Regeneration of injured skin and peripheral nerves requires control of wound contraction, not scar formation. Wound Repair and Regeneration, 25(2), 177-191. https://doi.org/10.1111/wrr.12516
  • Yun, I., Kang, E., Ahn, H., Kim, Y., Rah, D., Roh, T., Yun, C. (2019). Effect of relaxin expression from an alginate gel-encapsulated adenovirus on scar remodeling in a pig model. Yonsei Medical Journal, 60(9), 854. https://doi.org/10.3349/ymj.2019.60.9.854
  • Yuniati, R., Subchan, P., Riawan, W., Khrisna, M., Restiwijaya, M., Kusumaningrum, N., Nur, M. (2021). Topical ozonated virgin coconut oil improves wound healing and increases HSP90α, VEGF-A, EGF, BFGF and CD34 in diabetic ulcer mouse model of wound healing. F1000research, 9, 580. https://doi.org/10.12688/f1000research.22525.2
  • Zhang, J., Guan, M., Xie, C., Luo, X., Zhang, Q., Xue, Y. (2014). Increased growth factors play a role in wound healing promoted by noninvasive oxygen-ozone therapy in diabetic patients with foot ulcers. Oxidative Medicine and Cellular Longevity, 2014, 1-8. https://doi.org/10.1155/2014/273475
  • Zhang, X., Kang, X., Jin, L., Bai, J., Liu, W., and Wang, Z. (2018). Stimulation of wound healing using bioinspired hydrogels with basic fibroblast growth factor (bfgf). International Journal of Nanomedicine, Volume 13, 3897-3906. https://doi.org/10.2147/ijn.s168998
  • Zhang, Z., Chen, J., Huang, J., Yan, W., Zhang, Y., Chen, X. (2018). Experimental study of 5-fluorouracil encapsulated ethosomes combined with co2 fractional laser to treat hypertrophic scar. Nanoscale Research Letters, 13(1), 1-12. https://doi.org/10.1186/s11671-017-2425-x
  • Zhang, Y., Liu, Y., Cai, B., Luo, C., Li, D., Wang, S., Luo, S. (2019). Improvement of surgical scars by early intervention with carbon dioxide fractional laser. Lasers in Surgery and Medicine, 52(2), 137-148. https://doi.org/10.1002/lsm.23129
  • Zhai, X., Tang, Z., Ding, J., Lu, X. (2017). Expression of tgf-β1/mtor signaling pathway in pathological scar fibroblasts. Molecular Medicine Reports, 15(6), 3467-3472. https://doi.org/10.3892/mmr.2017.6437
  • Zhao, W., Zhang, H., Li, R., Cui, R. (2023). Advances in immunomodulatory mechanisms of mesenchymal stem cells-derived exosome on immune cells in scar formation. International Journal of Nanomedicine, Volume 18, 3643-3662. https://doi.org/10.2147/ijn.s412717
Toplam 129 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İç Hastalıkları, Klinik Tıp Bilimleri (Diğer)
Bölüm Makaleler
Yazarlar

Enver Tekin 0009-0009-9056-0311

Erken Görünüm Tarihi 15 Aralık 2024
Yayımlanma Tarihi
Gönderilme Tarihi 23 Kasım 2024
Kabul Tarihi 12 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: 3

Kaynak Göster

APA Tekin, E. (2024). THE MOLECULAR MECHANISM, TYPES AND TREATMENT OF SCAR FORMATION. Izmir Democracy University Health Sciences Journal, 7(3), 223-247. https://doi.org/10.52538/iduhes.1590063

227151960619606                 19629                   19630 1995319957 

19952  19958  20682 

20686


23848