Derleme
BibTex RIS Kaynak Göster

Yıl 2025, Cilt: 8 Sayı: 2, 81 - 100, 31.12.2025
https://doi.org/10.38061/idunas.1483732

Öz

Kaynakça

  • 1. G. Assenza et al., “Cathodal transcranial direct current stimulation reduces seizure frequency in adults with drug-resistant temporal lobe epilepsy: A sham controlled study,” Brain Stimulation, vol. 10, no. 2, pp. 333–335, Mar. 2017,https://doi.org/10.1016/j.brs.2016.12.005.
  • 2. G. Assenza et al., "Efficacy of cathodal transcranial direct current stimulation in drug-resistant epilepsy: A proof of principle," 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 2014, pp. 530-533, 10.1109/EMBC.2014.6943645.
  • 3. N. Auvichayapat et al., “Transcranial Direct Current Stimulation for Treatment of Refractory Childhood Focal Epilepsy,” Brain Stimulation, vol. 6, no. 4, pp. 696–700, Jul. 2013, https://doi.org/10.1016/j.brs.2013.01.009.
  • 4. N. Auvichayapat, K. Sinsupan, O. Tunkamnerdthai, and P. Auvichayapat, “Transcranial Direct Current Stimulation for Treatment of Childhood Pharmacoresistant Lennox–Gastaut Syndrome: A Pilot Study,” Frontiers in Neurology, vol. 7, May 2016, https://doi.org/10.3389/fneur.2016.00066.
  • 5. R. A. B. Badawy, G. Strigaro, and R. Cantello, “TMS, cortical excitability and epilepsy: The clinical impact,” Epilepsy Research, vol. 108, no. 2, pp. 153–161, Feb. 2014, https://doi.org/10.1016/j.eplepsyres.2013.11.014.
  • 6. S. Beumer et al., “Personalized tDCS for Focal Epilepsy—A Narrative Review: A Data-Driven Workflow Based on Imaging and EEG Data,” Brain sciences, vol. 12, no. 5, pp. 610–610, May 2022, https://doi.org/10.3390/brainsci12050610.
  • 7. M. Biabani, M. Aminitehrani, M. Zoghi, M. Farrell, G. Egan, and S. Jaberzadeh, “The effects of transcranial direct current stimulation on short-interval intracortical inhibition and intracortical facilitation: a systematic review and meta-analysis,” Reviews in the Neurosciences, vol. 29, no. 1, pp. 99–114, Dec. 2017, https://doi.org/10.1515/revneuro-2017-0023.
  • 8. L.J. Bindman, O. C. J. Lippold, and J. W. T. Redfearn, “The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects,” The Journal of Physiology, vol. 172, no. 3, pp. 369–382, Aug. 1964, https://doi.org/10.1113/jphysiol.1964.sp007425.
  • 9. J. J. Borckardt et al., “A Pilot Study of the Tolerability and Effects of High-Definition Transcranial Direct Current Stimulation (HD-tDCS) on Pain Perception,” The Journal of Pain, vol. 13, no. 2, pp. 112–120, Feb. 2012, https://doi.org/10.1016/j.jpain.2011.07.001.
  • 10. A.R. Brunoni et al., “Clinical research with transcranial direct current stimulation (tDCS): Challenges and future directions,” Brain Stimulation, vol. 5, no. 3, pp. 175–195, Jul. 2012, https://doi.org/10.1016/j.brs.2011.03.002.
  • 11. A.Cancelli et al., “Transcranial Direct Current Stimulation: Personalizing the neuromodulation,” Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, vol. 2015, pp. 234–7, 2015, https://doi.org/10.1109/EMBC.2015.7318343.
  • 12. Egas Caparelli-Dáquer et al., “A pilot study on effects of 4×1 High-Definition tDCS on motor cortex excitability,” Europe PMC (PubMed Central), Aug. 2012, https://doi.org/10.1109/embc.2012.6346036.
  • 13. M. Daoud et al., “Stereo-EEG based personalized multichannel transcranial direct current stimulation in drug-resistant epilepsy,” Clinical Neurophysiology, vol. 137, pp. 142–151, May 2022, https://doi.org/10.1016/j.clinph.2022.02.023.
  • 14. Datta, V. Bansal, J. Diaz, J. Patel, D. Reato, and M. Bikson, “Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad,” Brain Stimulation, vol. 2, no. 4, pp. 201-207.e1, Oct. 2009, https://doi.org/10.1016/j.brs.2009.03.005.
  • 15. A.Datta, M. Bikson, and F. Fregni, “Transcranial direct current stimulation in patients with skull defects and skull plates: High-resolution computational FEM study of factors altering cortical current flow,” NeuroImage, vol. 52, no. 4, pp. 1268–1278, Oct. 2010, https://doi.org/10.1016/j.neuroimage.2010.04.252.
  • 16. J. P. Dmochowski, A. Datta, Marom Bikson, Y. Su, and L. C. Parra, “Optimized multi-electrode stimulation increases focality and intensity at target,” Journal of Neural Engineering, vol. 8, no. 4, pp. 046011–046011, Jun. 2011, https://doi.org/10.1088/1741-2560/8/4/046011.
  • 17. J. P. Dmochowski, L. Koessler, A. M. Norcia, M. Bikson, and L. C. Parra, “Optimal use of EEG recordings to target active brain areas with transcranial electrical stimulation,” NeuroImage, vol. 157, pp. 69–80, Aug. 2017, https://doi.org/10.1016/j.neuroimage.2017.05.059.
  • 18. A.Donnell et al., “High-Definition and Non-invasive Brain Modulation of Pain and Motor Dysfunction in Chronic TMD,” Brain Stimulation, vol. 8, no. 6, pp. 1085–1092, Nov. 2015, https://doi.org/10.1016/j.brs.2015.06.008.
  • 19. D. Edwards, M. Cortes, A. Datta, P. Minhas, E. M. Wassermann, and M. Bikson, “Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: A basis for high-definition tDCS,” NeuroImage, vol. 74, pp. 266–275, Jul. 2013, https://doi.org/10.1016/j.neuroimage.2013.01.042.
  • 20. Evans, C. Bachmann, J. S. A. Lee, E. Gregoriou, N. Ward, and S. Bestmann, “Dose-controlled tDCS reduces electric field intensity variability at a cortical target site,” Brain Stimulation, vol. 13, no. 1, pp. 125–136, Jan. 2020, https://doi.org/10.1016/j.brs.2019.10.004.
  • 21. Fertonani, C. Pirulli, and C. Miniussi, “Random Noise Stimulation Improves Neuroplasticity in Perceptual Learning,” Journal of Neuroscience, vol. 31, no. 43, pp. 15416–15423, Oct. 2011, https://doi.org/10.1523/jneurosci.2002-11.2011.
  • 22. R. S. Fisher et al., “Transcranial direct current stimulation for focal status epilepticus or lateralized periodic discharges in four patients in a critical care setting,” Epilepsia, vol. 64, no. 4, pp. 875–887, Feb. 2023, https://doi.org/10.1111/epi.17514.
  • 23. F. Fregni et al., “Evidence-Based Guidelines and Secondary Meta-Analysis for the Use of Transcranial Direct Current Stimulation in Neurological and Psychiatric Disorders,” International Journal of Neuropsychopharmacology, vol. 24, no. 4, pp. 256–313, Jul. 2020, https://doi.org/10.1093/ijnp/pyaa051.
  • 24. F. Fregni, S. Thome-Souza, M. A. Nitsche, S. D. Freedman, K. D. Valente, and A. Pascual-Leone, “A Controlled Clinical Trial of Cathodal DC Polarization in Patients with Refractory Epilepsy,” Epilepsia, vol. 47, no. 2, pp. 335–342, Feb. 2006, https://doi.org/10.1111/j.1528-1167.2006.00426.x.
  • 25. K. Fricke, A. A. Seeber, N. Thirugnanasambandam, W. Paulus, M. A. Nitsche, and J. C. Rothwell, “Time course of the induction of homeostatic plasticity generated by repeated transcranial direct current stimulation of the human motor cortex,” Journal of Neurophysiology, vol. 105, no. 3, pp. 1141–1149, Mar. 2011, https://doi.org/10.1152/jn.00608.2009.
  • 26. Fritsch et al., “Direct Current Stimulation Promotes BDNF-Dependent Synaptic Plasticity: Potential Implications for Motor Learning,” Neuron, vol. 66, no. 2, pp. 198–204, Apr. 2010, https://doi.org/10.1016/j.neuron.2010.03.035.
  • 27. E. O. Garnett, S. Malyutina, A. Datta, and Dirk-Bart den Ouden, “On the Use of the Terms Anodal and Cathodal in High-Definition Transcranial Direct Current Stimulation: A Technical Note,” Neuromodulation: Technology at the Neural Interface, vol. 18, no. 8, pp. 705–713, Dec. 2015, https://doi.org/10.1111/ner.12320.
  • 28. Talyta Cortez Grippe, J. P. Brasil‐Neto, R. Boëchat-Barros, N. Spinola, and P. L. Oliveira, “Interruption of Epilepsia Partialis Continua by Transcranial Direct Current Stimulation,” Brain Stimulation, vol. 8, no. 6, pp. 1227–1228, Nov. 2015, https://doi.org/10.1016/j.brs.2015.08.004.
  • 29. H. M. Hamer, “Motor cortex excitability in focal epilepsies not including the primary motor area--a TMS study,” Brain, vol. 128, no. 4, pp. 811–818, Feb. 2005, https://doi.org/10.1093/brain/awh398.
  • 30. H. Helmholtz, “Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche,” Annalen der Physik und Chemie, vol. 165, no. 6, pp. 211–233, 1853, https://doi.org/10.1002/andp.18531650603.
  • 31. Y. Huang, A. Datta, M. Bikson, and L. C. Parra, “Realistic volumetric-approach to simulate transcranial electric stimulation—ROAST—a fully automated open-source pipeline,” Journal of Neural Engineering, vol. 16, no. 5, p. 056006, Jul. 2019, https://doi.org/10.1088/1741-2552/ab208d.
  • 32. L. E. Jehi, D. C. Silveira, W. Bingaman, and I. Najm, “Temporal lobe epilepsy surgery failures: predictors of seizure recurrence, yield of reevaluation, and outcome following reoperation,” Journal of neurosurgery, vol. 113, no. 6, pp. 1186–94, Dec. 2010, https://doi.org/10.3171/2010.8.JNS10180.
  • 33. Y. Kabakov, P. A. Muller, A. Pascual-Leone, F. E. Jensen, and A. Rotenberg, “Contribution of axonal orientation to pathway-dependent modulation of excitatory transmission by direct current stimulation in isolated rat hippocampus,” Journal of Neurophysiology, vol. 107, no. 7, pp. 1881–1889, Apr. 2012, https://doi.org/10.1152/jn.00715.2011.
  • 34. Sanaz Ahmadi Karvigh, Mahmood, Mahsa Arzani, and N. Roshan, “HD-tDCS in refractory lateral frontal lobe epilepsy patients,” Seizure: European Journal of Epilepsy, vol. 47, pp. 74–80, Apr. 2017, https://doi.org/10.1016/j.seizure.2017.03.005.
  • 35. H. L. Kaye et al., “Personalized, Multisession, Multichannel Transcranial Direct Current Stimulation in Medication-Refractory Focal Epilepsy: An Open-Label Study,” Journal of Clinical Neurophysiology, vol. 40, no. 1, pp. 53–62, May 2021, https://doi.org/10.1097/wnp.0000000000000838.
  • 36. L. M. Li, K. Uehara, and T. Hanakawa, “The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies,” Frontiers in Cellular Neuroscience, vol. 9, May 2015, https://doi.org/10.3389/fncel.2015.00181.
  • 37. L.-C. Lin, C.-S. Ouyang, C.-T. Chiang, R.-C. Yang, R.-C. Wu, and H.-C. Wu, “Cumulative effect of transcranial direct current stimulation in patients with partial refractory epilepsy and its association with phase lag index-A preliminary study,” Epilepsy & Behavior, vol. 84, pp. 142–147, Jul. 2018, https://doi.org/10.1016/j.yebeh.2018.04.017.
  • 38. M. Bikson, A. Datta, and M. Elwassif, “Establishing safety limits for transcranial direct current stimulation,” Clinical Neurophysiology, vol. 120, no. 6, pp. 1033–1034, Jun. 2009, https://doi.org/10.1016/j.clinph.2009.03.018.
  • 39. F. Masina, G. Arcara, E. Galletti, I. Cinque, L. Gamberini, and D. Mapelli, “Neurophysiological and behavioural effects of conventional and high definition tDCS,” Scientific Reports, vol. 11, no. 1, Apr. 2021, https://doi.org/10.1038/s41598-021-87371-z.
  • 40. G. K. Mbizvo, K. Bennett, C. R. Simpson, S. E. Duncan, and R. F. M. Chin, “Epilepsy-related and other causes of mortality in people with epilepsy: A systematic review of systematic reviews,” Epilepsy Research, vol. 157, p. 106192, Nov. 2019, https://doi.org/10.1016/j.eplepsyres.2019.106192.
  • 41. O. Meiron et al., “High-Definition transcranial direct current stimulation in early onset epileptic encephalopathy: a case study,” Brain Injury, vol. 32, no. 1, pp. 135–143, 2018, https://doi.org/10.1080/02699052.2017.1390254.
  • 42. Oded Meiron et al., “Antiepileptic Effects of a Novel Non-invasive Neuromodulation Treatment in a Subject With Early-Onset Epileptic Encephalopathy: Case Report With 20 Sessions of HD-tDCS Intervention,” vol. 13, May 2019, https://doi.org/10.3389/fnins.2019.00547.
  • 43. P. Minhas et al., “Electrodes for high-definition transcutaneous DC stimulation for applications in drug delivery and electrotherapy, including tDCS,” Journal of Neuroscience Methods, vol. 190, no. 2, pp. 188–197, Jul. 2010, https://doi.org/10.1016/j.jneumeth.2010.05.007.
  • 44. K. Monte-Silva, M.-F. Kuo, D. Liebetanz, W. Paulus, and M. A. Nitsche, “Shaping the Optimal Repetition Interval for Cathodal Transcranial Direct Current Stimulation (tDCS),” Journal of Neurophysiology, vol. 103, no. 4, pp. 1735–1740, Apr. 2010, https://doi.org/10.1152/jn.00924.2009.
  • 45. M. C. Ng et al., “A Pilot Study of High-Definition Transcranial Direct Current Stimulation in Refractory Status Epilepticus: The SURESTEP Trial,” Neurotherapeutics, vol. 20, no. 1, pp. 181–194, Jan. 2023, https://doi.org/10.1007/s13311-022-01317-5.
  • 46. S. Nikolin, C. K. Loo, S. Bai, S. Dokos, and D. M. Martin, “Focalised stimulation using high definition transcranial direct current stimulation (HD-tDCS) to investigate declarative verbal learning and memory functioning,” NeuroImage, vol. 117, pp. 11–19, Aug. 2015, https://doi.org/10.1016/j.neuroimage.2015.05.019.
  • 47. M. A. Nitsche and W. Paulus, “Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation,” The Journal of Physiology, vol. 527, no. 3, pp. 633–639, Sep. 2000, https://doi.org/10.1111/j.1469-7793.2000.t01-1-00633.x.
  • 48. M. A. Nitsche and W. Paulus, “Noninvasive brain stimulation protocols in the treatment of epilepsy: Current state and perspectives,” vol. 6, no. 2, pp. 244–250, Apr. 2009, https://doi.org/10.1016/j.nurt.2009.01.003.
  • 49. M. A. Nitsche et al., “Transcranial direct current stimulation: State of the art 2008,” Brain Stimulation, vol. 1, no. 3, pp. 206–223, Jul. 2008, https://doi.org/10.1016/j.brs.2008.06.004.
  • 50. P. Faria, F. Fregni, F. Sebastião, A. I. Dias, and A. Leal, “Feasibility of focal transcranial DC polarization with simultaneous EEG recording: Preliminary assessment in healthy subjects and human epilepsy,” Epilepsy & Behavior, vol. 25, no. 3, pp. 417–425, Nov. 2012, https://doi.org/10.1016/j.yebeh.2012.06.027.
  • 51. N. S. Philip, B. G. Nelson, F. Frohlich, K. O. Lim, A. S. Widge, and L. L. Carpenter, “Low-Intensity Transcranial Current Stimulation in Psychiatry,” American Journal of Psychiatry, vol. 174, no. 7, pp. 628–639, Jul. 2017, https://doi.org/10.1176/appi.ajp.2017.16090996.
  • 52. R. Polanía, M. A. Nitsche, and C. C. Ruff, “Studying and modifying brain function with non-invasive brain stimulation,” Nature Neuroscience, vol. 21, no. 2, pp. 174–187, Jan. 2018, https://doi.org/10.1038/s41593-017-0054-4.
  • 53. T. Radman, R. L. Ramos, J. C. Brumberg, and M. Bikson, “Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro,” Brain Stimulation, vol. 2, no. 4, pp. 215-228.e3, Oct. 2009, https://doi.org/10.1016/j.brs.2009.03.007.
  • 54. Rahman et al., “Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects,” The Journal of Physiology, vol. 591, no. 10, pp. 2563–2578, Apr. 2013, https://doi.org/10.1113/jphysiol.2012.247171.
  • 55. S. Rezakhani, M. Amiri, S. Weckhuysen, and G. A. Keliris, “Therapeutic efficacy of seizure onset zone-targeting high-definition cathodal tDCS in patients with drug-resistant focal epilepsy,” Clinical Neurophysiology, vol. 136, pp. 219–227, Apr. 2022, https://doi.org/10.1016/j.clinph.2022.01.130.
  • 56. G. Ruffini et al., “Transcranial Current Brain Stimulation (tCS): Models and Technologies,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 21, no. 3, pp. 333–345, May 2013, https://doi.org/10.1109/tnsre.2012.2200046.
  • 57. Y. Yang et al., “The efficacy and safety of third-generation antiseizure medications and non-invasive brain stimulation to treat refractory epilepsy: a systematic review and network meta-analysis study,” Frontiers in neurology, vol. 14, Jan. 2024, https://doi.org/10.3389/fneur.2023.1307296.
  • 58. San-Juan et al., “Transcranial Direct Current Stimulation in Mesial Temporal Lobe Epilepsy and Hippocampal Sclerosis,” Brain Stimulation, vol. 10, no. 1, pp. 28–35, Jan. 2017, https://doi.org/10.1016/j.brs.2016.08.013.
  • 59. San-juan et al., “Transcranial Direct Current Stimulation in Epilepsy,” Brain Stimulation, vol. 8, no. 3, pp. 455–464, May 2015, https://doi.org/10.1016/j.brs.2015.01.001.
  • 60. San-Juan, C. I. Sarmiento, K. M. González, and M. Orenday, “Successful Treatment of a Drug-Resistant Epilepsy by Long-term Transcranial Direct Current Stimulation: A Case Report,” Frontiers in Neurology, vol. 9, Feb. 2018, https://doi.org/10.3389/fneur.2018.00065.
  • 61. H. Seo and Sung Chan Jun, “Relation between the electric field and activation of cortical neurons in transcranial electrical stimulation,” Brain stimulation, vol. 12, no. 2, pp. 275–289, Mar. 2019, https://doi.org/10.1016/j.brs.2018.11.004.
  • 62. J. Silvanto, N. Muggleton, and V. Walsh, “State-dependency in brain stimulation studies of perception and cognition,” Trends in Cognitive Sciences, vol. 12, no. 12, pp. 447–454, Dec. 2008, https://doi.org/10.1016/j.tics.2008.09.004.
  • 63. “Sim4Life» zurich med tech,” Zmt.swiss, 2021. https://zmt.swiss/news-and-events/news/sim4life/ (accessed Jun. 26, 2025).
  • 64. S. Simula et al., “Transcranial current stimulation in epilepsy: A systematic review of the fundamental and clinical aspects,” Frontiers in neuroscience, vol. 16, Aug. 2022, https://doi.org/10.3389/fnins.2022.909421.
  • 65. H. STEINBERG, “Letter to the Editor: Transcranial direct current stimulation (tDCS) has a history reaching back to the 19th century,” Psychological Medicine, vol. 43, no. 3, pp. 669–671, 2013. 10.1017/S0033291712002929
  • 66. P. Sudbrack-Oliveira et al., “Transcranial direct current stimulation (tDCS) in the management of epilepsy: A systematic review,” Seizure, vol. 86, pp. 85–95, Mar. 2021, https://doi.org/10.1016/j.seizure.2021.01.020.
  • 67. P. Tekturk et al., “Transcranial direct current stimulation improves seizure control in patients with Rasmussen encephalitis,” Epileptic Disorders, vol. 18, no. 1, pp. 58–66, Mar. 2016, https://doi.org/10.1684/epd.2016.0796.
  • 68. “The History of Transcranial Direct Current Stimulation (tDCS) - tDCS.com,” Tdcs.com, 2024. https://tdcs.com/history-of-tdcs/
  • 69. Thielscher, A. Antunes, and G. B. Saturnino, “Field modeling for transcranial magnetic stimulation: A useful tool to understand the physiological effects of TMS?,” 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Aug. 2015, https://doi.org/10.1109/embc.2015.7318340.
  • 70. Q. Truong and M. Bikson, “Physics of Transcranial Direct Current Stimulation Devices and Their History,” The Journal of ECT, vol. 34, no. 3, pp. 137–143, Sep. 2018, https://doi.org/10.1097/yct.0000000000000531.
  • 71. T. Varga et al., “Transcranial direct current stimulation in refractory continuous spikes and waves during slow sleep: a controlled study,” Epilepsy research, vol. 97, no. 1–2, pp. 142–5, Nov. 2011, https://doi.org/10.1016/j.eplepsyres.2011.07.016.
  • 72. M. F. Villamar, M. S. Volz, M. Bikson, A. Datta, A. F. DaSilva, and F. Fregni, “Technique and Considerations in the Use of 4x1 Ring High-definition Transcranial Direct Current Stimulation (HD-tDCS),” Journal of Visualized Experiments, no. 77, Jul. 2013, https://doi.org/10.3791/50309.
  • 73. M. F. Villamar et al., “Focal Modulation of the Primary Motor Cortex in Fibromyalgia Using 4×1-Ring High-Definition Transcranial Direct Current Stimulation (HD-tDCS): Immediate and Delayed Analgesic Effects of Cathodal and Anodal Stimulation,” The Journal of Pain, vol. 14, no. 4, pp. 371–383, Apr. 2013, https://doi.org/10.1016/j.jpain.2012.12.007.
  • 74. Wexler, “Recurrent themes in the history of the home use of electrical stimulation: Transcranial direct current stimulation (tDCS) and the medical battery (1870–1920),” Brain Stimulation, vol. 10, no. 2, pp. 187–195, Mar. 2017, https://doi.org/10.1016/j.brs.2016.11.081.
  • 75. Yang et al., “Transcranial Direct Current Stimulation for Patients With Pharmacoresistant Epileptic Spasms: A Pilot Study,” vol. 10, Feb. 2019, https://doi.org/10.3389/fneur.2019.00050.
  • 76. D. Yang et al., “Repeated long sessions of transcranial direct current stimulation reduces seizure frequency in patients with refractory focal epilepsy: An open-label extension study,” Epilepsy & Behavior, vol. 135, p. 108876, Oct. 2022, https://doi.org/10.1016/j.yebeh.2022.108876.
  • 77. D. Yang et al., “Transcranial direct current stimulation reduces seizure frequency in patients with refractory focal epilepsy: A randomized, double-blind, sham-controlled, and three-arm parallel multicenter study,” Brain Stimulation, vol. 13, no. 1, pp. 109–116, Jan. 2020, https://doi.org/10.1016/j.brs.2019.09.006.
  • 78. D. Yang et al., “Transcranial Direct Current Stimulation for Patients With Pharmacoresistant Epileptic Spasms: A Pilot Study,” vol. 10, Feb. 2019, https://doi.org/10.3389/fneur.2019.00050.
  • 79. P. A. Yushkevich et al., “User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability,” NeuroImage, vol. 31, no. 3, pp. 1116–1128, Jul. 2006, https://doi.org/10.1016/j.neuroimage.2006.01.015.
  • 80. Zewdie et al., “Safety and tolerability of transcranial magnetic and direct current stimulation in children: Prospective single center evidence from 3.5 million stimulations,” Brain Stimulation, vol. 13, no. 3, pp. 565–575, May 2020, https://doi.org/10.1016/j.brs.2019.12.025.
  • 81. M. Zoghi, T. J. O’Brien, P. Kwan, M. J. Cook, M. Galea, and S. Jaberzadeh, “Cathodal transcranial direct-current stimulation for treatment of drug-resistant temporal lobe epilepsy: A pilot randomized controlled trial,” Epilepsia Open, vol. 1, no. 3–4, pp. 130–135, Oct. 2016, https://doi.org/10.1002/epi4.12020.
  • 82. M. Zoghi, T. J. O’Brien, P. Kwan, M. J. Cook, M. Galea, and S. Jaberzadeh, “The Effects of Cathodal Transcranial Direct Current Stimulation in a Patient with Drug-Resistant Temporal Lobe Epilepsy (Case Study),” Brain Stimulation, vol. 9, no. 5, pp. 790–792, Sep. 2016, ttps://doi.org/10.1016/j.brs.2016.05.011.

Cathodal tDCS and HD-tDCS neuromodulation techniques in the treatment of patients with Drug resistant epilepsy

Yıl 2025, Cilt: 8 Sayı: 2, 81 - 100, 31.12.2025
https://doi.org/10.38061/idunas.1483732

Öz

Cathodal transcranial Direct Current Stimulation (ctDCS) is a safe non-invasive neuromodulation method that has been examined for the management of epilepsy over the past three decades to decrease seizure frequency. The advanced version of transcranial Direct Current Stimulation (tDCS), High-Definition transcranial Direct Current Stimulation (HD-tDCS) has been developed to provide increased focus because of its focal effect and diminshed neuromodulatory effects beyond the epileptogenic area of interest hence it is preferred over traditional tDCS.

Purpose: Scientists and researchers performing animal and human clinical research and clinical trials suggest that ctDCS or HD-tDCS may suppress seizures for patients with drug-resistant focal epilepsy. The purpose of this review paper is to analyze and compile clinical studies and research articles to gain a deeper understanding of the capability of HD-tDCS in managing seziures for patients with drug-resistant epilepsy.

Conclusion: Application of optimized HD-tDCS (HD-tDCS) for majority of the cases can effectively decrease seizure frequency for patients with drug-resistant focal epilepsy (DRFE). Some patients, however had increased seizure frequency due to unknown reasons that ought to be researched.

Destekleyen Kurum

Tübitak 2209-A

Teşekkür

This study was supported by Scientific and Technological Research Council of Turkey (TUBITAK) under the Grant Number 1919B012214905. The authors thank TUBITAK for their support.

Kaynakça

  • 1. G. Assenza et al., “Cathodal transcranial direct current stimulation reduces seizure frequency in adults with drug-resistant temporal lobe epilepsy: A sham controlled study,” Brain Stimulation, vol. 10, no. 2, pp. 333–335, Mar. 2017,https://doi.org/10.1016/j.brs.2016.12.005.
  • 2. G. Assenza et al., "Efficacy of cathodal transcranial direct current stimulation in drug-resistant epilepsy: A proof of principle," 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 2014, pp. 530-533, 10.1109/EMBC.2014.6943645.
  • 3. N. Auvichayapat et al., “Transcranial Direct Current Stimulation for Treatment of Refractory Childhood Focal Epilepsy,” Brain Stimulation, vol. 6, no. 4, pp. 696–700, Jul. 2013, https://doi.org/10.1016/j.brs.2013.01.009.
  • 4. N. Auvichayapat, K. Sinsupan, O. Tunkamnerdthai, and P. Auvichayapat, “Transcranial Direct Current Stimulation for Treatment of Childhood Pharmacoresistant Lennox–Gastaut Syndrome: A Pilot Study,” Frontiers in Neurology, vol. 7, May 2016, https://doi.org/10.3389/fneur.2016.00066.
  • 5. R. A. B. Badawy, G. Strigaro, and R. Cantello, “TMS, cortical excitability and epilepsy: The clinical impact,” Epilepsy Research, vol. 108, no. 2, pp. 153–161, Feb. 2014, https://doi.org/10.1016/j.eplepsyres.2013.11.014.
  • 6. S. Beumer et al., “Personalized tDCS for Focal Epilepsy—A Narrative Review: A Data-Driven Workflow Based on Imaging and EEG Data,” Brain sciences, vol. 12, no. 5, pp. 610–610, May 2022, https://doi.org/10.3390/brainsci12050610.
  • 7. M. Biabani, M. Aminitehrani, M. Zoghi, M. Farrell, G. Egan, and S. Jaberzadeh, “The effects of transcranial direct current stimulation on short-interval intracortical inhibition and intracortical facilitation: a systematic review and meta-analysis,” Reviews in the Neurosciences, vol. 29, no. 1, pp. 99–114, Dec. 2017, https://doi.org/10.1515/revneuro-2017-0023.
  • 8. L.J. Bindman, O. C. J. Lippold, and J. W. T. Redfearn, “The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects,” The Journal of Physiology, vol. 172, no. 3, pp. 369–382, Aug. 1964, https://doi.org/10.1113/jphysiol.1964.sp007425.
  • 9. J. J. Borckardt et al., “A Pilot Study of the Tolerability and Effects of High-Definition Transcranial Direct Current Stimulation (HD-tDCS) on Pain Perception,” The Journal of Pain, vol. 13, no. 2, pp. 112–120, Feb. 2012, https://doi.org/10.1016/j.jpain.2011.07.001.
  • 10. A.R. Brunoni et al., “Clinical research with transcranial direct current stimulation (tDCS): Challenges and future directions,” Brain Stimulation, vol. 5, no. 3, pp. 175–195, Jul. 2012, https://doi.org/10.1016/j.brs.2011.03.002.
  • 11. A.Cancelli et al., “Transcranial Direct Current Stimulation: Personalizing the neuromodulation,” Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, vol. 2015, pp. 234–7, 2015, https://doi.org/10.1109/EMBC.2015.7318343.
  • 12. Egas Caparelli-Dáquer et al., “A pilot study on effects of 4×1 High-Definition tDCS on motor cortex excitability,” Europe PMC (PubMed Central), Aug. 2012, https://doi.org/10.1109/embc.2012.6346036.
  • 13. M. Daoud et al., “Stereo-EEG based personalized multichannel transcranial direct current stimulation in drug-resistant epilepsy,” Clinical Neurophysiology, vol. 137, pp. 142–151, May 2022, https://doi.org/10.1016/j.clinph.2022.02.023.
  • 14. Datta, V. Bansal, J. Diaz, J. Patel, D. Reato, and M. Bikson, “Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad,” Brain Stimulation, vol. 2, no. 4, pp. 201-207.e1, Oct. 2009, https://doi.org/10.1016/j.brs.2009.03.005.
  • 15. A.Datta, M. Bikson, and F. Fregni, “Transcranial direct current stimulation in patients with skull defects and skull plates: High-resolution computational FEM study of factors altering cortical current flow,” NeuroImage, vol. 52, no. 4, pp. 1268–1278, Oct. 2010, https://doi.org/10.1016/j.neuroimage.2010.04.252.
  • 16. J. P. Dmochowski, A. Datta, Marom Bikson, Y. Su, and L. C. Parra, “Optimized multi-electrode stimulation increases focality and intensity at target,” Journal of Neural Engineering, vol. 8, no. 4, pp. 046011–046011, Jun. 2011, https://doi.org/10.1088/1741-2560/8/4/046011.
  • 17. J. P. Dmochowski, L. Koessler, A. M. Norcia, M. Bikson, and L. C. Parra, “Optimal use of EEG recordings to target active brain areas with transcranial electrical stimulation,” NeuroImage, vol. 157, pp. 69–80, Aug. 2017, https://doi.org/10.1016/j.neuroimage.2017.05.059.
  • 18. A.Donnell et al., “High-Definition and Non-invasive Brain Modulation of Pain and Motor Dysfunction in Chronic TMD,” Brain Stimulation, vol. 8, no. 6, pp. 1085–1092, Nov. 2015, https://doi.org/10.1016/j.brs.2015.06.008.
  • 19. D. Edwards, M. Cortes, A. Datta, P. Minhas, E. M. Wassermann, and M. Bikson, “Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: A basis for high-definition tDCS,” NeuroImage, vol. 74, pp. 266–275, Jul. 2013, https://doi.org/10.1016/j.neuroimage.2013.01.042.
  • 20. Evans, C. Bachmann, J. S. A. Lee, E. Gregoriou, N. Ward, and S. Bestmann, “Dose-controlled tDCS reduces electric field intensity variability at a cortical target site,” Brain Stimulation, vol. 13, no. 1, pp. 125–136, Jan. 2020, https://doi.org/10.1016/j.brs.2019.10.004.
  • 21. Fertonani, C. Pirulli, and C. Miniussi, “Random Noise Stimulation Improves Neuroplasticity in Perceptual Learning,” Journal of Neuroscience, vol. 31, no. 43, pp. 15416–15423, Oct. 2011, https://doi.org/10.1523/jneurosci.2002-11.2011.
  • 22. R. S. Fisher et al., “Transcranial direct current stimulation for focal status epilepticus or lateralized periodic discharges in four patients in a critical care setting,” Epilepsia, vol. 64, no. 4, pp. 875–887, Feb. 2023, https://doi.org/10.1111/epi.17514.
  • 23. F. Fregni et al., “Evidence-Based Guidelines and Secondary Meta-Analysis for the Use of Transcranial Direct Current Stimulation in Neurological and Psychiatric Disorders,” International Journal of Neuropsychopharmacology, vol. 24, no. 4, pp. 256–313, Jul. 2020, https://doi.org/10.1093/ijnp/pyaa051.
  • 24. F. Fregni, S. Thome-Souza, M. A. Nitsche, S. D. Freedman, K. D. Valente, and A. Pascual-Leone, “A Controlled Clinical Trial of Cathodal DC Polarization in Patients with Refractory Epilepsy,” Epilepsia, vol. 47, no. 2, pp. 335–342, Feb. 2006, https://doi.org/10.1111/j.1528-1167.2006.00426.x.
  • 25. K. Fricke, A. A. Seeber, N. Thirugnanasambandam, W. Paulus, M. A. Nitsche, and J. C. Rothwell, “Time course of the induction of homeostatic plasticity generated by repeated transcranial direct current stimulation of the human motor cortex,” Journal of Neurophysiology, vol. 105, no. 3, pp. 1141–1149, Mar. 2011, https://doi.org/10.1152/jn.00608.2009.
  • 26. Fritsch et al., “Direct Current Stimulation Promotes BDNF-Dependent Synaptic Plasticity: Potential Implications for Motor Learning,” Neuron, vol. 66, no. 2, pp. 198–204, Apr. 2010, https://doi.org/10.1016/j.neuron.2010.03.035.
  • 27. E. O. Garnett, S. Malyutina, A. Datta, and Dirk-Bart den Ouden, “On the Use of the Terms Anodal and Cathodal in High-Definition Transcranial Direct Current Stimulation: A Technical Note,” Neuromodulation: Technology at the Neural Interface, vol. 18, no. 8, pp. 705–713, Dec. 2015, https://doi.org/10.1111/ner.12320.
  • 28. Talyta Cortez Grippe, J. P. Brasil‐Neto, R. Boëchat-Barros, N. Spinola, and P. L. Oliveira, “Interruption of Epilepsia Partialis Continua by Transcranial Direct Current Stimulation,” Brain Stimulation, vol. 8, no. 6, pp. 1227–1228, Nov. 2015, https://doi.org/10.1016/j.brs.2015.08.004.
  • 29. H. M. Hamer, “Motor cortex excitability in focal epilepsies not including the primary motor area--a TMS study,” Brain, vol. 128, no. 4, pp. 811–818, Feb. 2005, https://doi.org/10.1093/brain/awh398.
  • 30. H. Helmholtz, “Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche,” Annalen der Physik und Chemie, vol. 165, no. 6, pp. 211–233, 1853, https://doi.org/10.1002/andp.18531650603.
  • 31. Y. Huang, A. Datta, M. Bikson, and L. C. Parra, “Realistic volumetric-approach to simulate transcranial electric stimulation—ROAST—a fully automated open-source pipeline,” Journal of Neural Engineering, vol. 16, no. 5, p. 056006, Jul. 2019, https://doi.org/10.1088/1741-2552/ab208d.
  • 32. L. E. Jehi, D. C. Silveira, W. Bingaman, and I. Najm, “Temporal lobe epilepsy surgery failures: predictors of seizure recurrence, yield of reevaluation, and outcome following reoperation,” Journal of neurosurgery, vol. 113, no. 6, pp. 1186–94, Dec. 2010, https://doi.org/10.3171/2010.8.JNS10180.
  • 33. Y. Kabakov, P. A. Muller, A. Pascual-Leone, F. E. Jensen, and A. Rotenberg, “Contribution of axonal orientation to pathway-dependent modulation of excitatory transmission by direct current stimulation in isolated rat hippocampus,” Journal of Neurophysiology, vol. 107, no. 7, pp. 1881–1889, Apr. 2012, https://doi.org/10.1152/jn.00715.2011.
  • 34. Sanaz Ahmadi Karvigh, Mahmood, Mahsa Arzani, and N. Roshan, “HD-tDCS in refractory lateral frontal lobe epilepsy patients,” Seizure: European Journal of Epilepsy, vol. 47, pp. 74–80, Apr. 2017, https://doi.org/10.1016/j.seizure.2017.03.005.
  • 35. H. L. Kaye et al., “Personalized, Multisession, Multichannel Transcranial Direct Current Stimulation in Medication-Refractory Focal Epilepsy: An Open-Label Study,” Journal of Clinical Neurophysiology, vol. 40, no. 1, pp. 53–62, May 2021, https://doi.org/10.1097/wnp.0000000000000838.
  • 36. L. M. Li, K. Uehara, and T. Hanakawa, “The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies,” Frontiers in Cellular Neuroscience, vol. 9, May 2015, https://doi.org/10.3389/fncel.2015.00181.
  • 37. L.-C. Lin, C.-S. Ouyang, C.-T. Chiang, R.-C. Yang, R.-C. Wu, and H.-C. Wu, “Cumulative effect of transcranial direct current stimulation in patients with partial refractory epilepsy and its association with phase lag index-A preliminary study,” Epilepsy & Behavior, vol. 84, pp. 142–147, Jul. 2018, https://doi.org/10.1016/j.yebeh.2018.04.017.
  • 38. M. Bikson, A. Datta, and M. Elwassif, “Establishing safety limits for transcranial direct current stimulation,” Clinical Neurophysiology, vol. 120, no. 6, pp. 1033–1034, Jun. 2009, https://doi.org/10.1016/j.clinph.2009.03.018.
  • 39. F. Masina, G. Arcara, E. Galletti, I. Cinque, L. Gamberini, and D. Mapelli, “Neurophysiological and behavioural effects of conventional and high definition tDCS,” Scientific Reports, vol. 11, no. 1, Apr. 2021, https://doi.org/10.1038/s41598-021-87371-z.
  • 40. G. K. Mbizvo, K. Bennett, C. R. Simpson, S. E. Duncan, and R. F. M. Chin, “Epilepsy-related and other causes of mortality in people with epilepsy: A systematic review of systematic reviews,” Epilepsy Research, vol. 157, p. 106192, Nov. 2019, https://doi.org/10.1016/j.eplepsyres.2019.106192.
  • 41. O. Meiron et al., “High-Definition transcranial direct current stimulation in early onset epileptic encephalopathy: a case study,” Brain Injury, vol. 32, no. 1, pp. 135–143, 2018, https://doi.org/10.1080/02699052.2017.1390254.
  • 42. Oded Meiron et al., “Antiepileptic Effects of a Novel Non-invasive Neuromodulation Treatment in a Subject With Early-Onset Epileptic Encephalopathy: Case Report With 20 Sessions of HD-tDCS Intervention,” vol. 13, May 2019, https://doi.org/10.3389/fnins.2019.00547.
  • 43. P. Minhas et al., “Electrodes for high-definition transcutaneous DC stimulation for applications in drug delivery and electrotherapy, including tDCS,” Journal of Neuroscience Methods, vol. 190, no. 2, pp. 188–197, Jul. 2010, https://doi.org/10.1016/j.jneumeth.2010.05.007.
  • 44. K. Monte-Silva, M.-F. Kuo, D. Liebetanz, W. Paulus, and M. A. Nitsche, “Shaping the Optimal Repetition Interval for Cathodal Transcranial Direct Current Stimulation (tDCS),” Journal of Neurophysiology, vol. 103, no. 4, pp. 1735–1740, Apr. 2010, https://doi.org/10.1152/jn.00924.2009.
  • 45. M. C. Ng et al., “A Pilot Study of High-Definition Transcranial Direct Current Stimulation in Refractory Status Epilepticus: The SURESTEP Trial,” Neurotherapeutics, vol. 20, no. 1, pp. 181–194, Jan. 2023, https://doi.org/10.1007/s13311-022-01317-5.
  • 46. S. Nikolin, C. K. Loo, S. Bai, S. Dokos, and D. M. Martin, “Focalised stimulation using high definition transcranial direct current stimulation (HD-tDCS) to investigate declarative verbal learning and memory functioning,” NeuroImage, vol. 117, pp. 11–19, Aug. 2015, https://doi.org/10.1016/j.neuroimage.2015.05.019.
  • 47. M. A. Nitsche and W. Paulus, “Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation,” The Journal of Physiology, vol. 527, no. 3, pp. 633–639, Sep. 2000, https://doi.org/10.1111/j.1469-7793.2000.t01-1-00633.x.
  • 48. M. A. Nitsche and W. Paulus, “Noninvasive brain stimulation protocols in the treatment of epilepsy: Current state and perspectives,” vol. 6, no. 2, pp. 244–250, Apr. 2009, https://doi.org/10.1016/j.nurt.2009.01.003.
  • 49. M. A. Nitsche et al., “Transcranial direct current stimulation: State of the art 2008,” Brain Stimulation, vol. 1, no. 3, pp. 206–223, Jul. 2008, https://doi.org/10.1016/j.brs.2008.06.004.
  • 50. P. Faria, F. Fregni, F. Sebastião, A. I. Dias, and A. Leal, “Feasibility of focal transcranial DC polarization with simultaneous EEG recording: Preliminary assessment in healthy subjects and human epilepsy,” Epilepsy & Behavior, vol. 25, no. 3, pp. 417–425, Nov. 2012, https://doi.org/10.1016/j.yebeh.2012.06.027.
  • 51. N. S. Philip, B. G. Nelson, F. Frohlich, K. O. Lim, A. S. Widge, and L. L. Carpenter, “Low-Intensity Transcranial Current Stimulation in Psychiatry,” American Journal of Psychiatry, vol. 174, no. 7, pp. 628–639, Jul. 2017, https://doi.org/10.1176/appi.ajp.2017.16090996.
  • 52. R. Polanía, M. A. Nitsche, and C. C. Ruff, “Studying and modifying brain function with non-invasive brain stimulation,” Nature Neuroscience, vol. 21, no. 2, pp. 174–187, Jan. 2018, https://doi.org/10.1038/s41593-017-0054-4.
  • 53. T. Radman, R. L. Ramos, J. C. Brumberg, and M. Bikson, “Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro,” Brain Stimulation, vol. 2, no. 4, pp. 215-228.e3, Oct. 2009, https://doi.org/10.1016/j.brs.2009.03.007.
  • 54. Rahman et al., “Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects,” The Journal of Physiology, vol. 591, no. 10, pp. 2563–2578, Apr. 2013, https://doi.org/10.1113/jphysiol.2012.247171.
  • 55. S. Rezakhani, M. Amiri, S. Weckhuysen, and G. A. Keliris, “Therapeutic efficacy of seizure onset zone-targeting high-definition cathodal tDCS in patients with drug-resistant focal epilepsy,” Clinical Neurophysiology, vol. 136, pp. 219–227, Apr. 2022, https://doi.org/10.1016/j.clinph.2022.01.130.
  • 56. G. Ruffini et al., “Transcranial Current Brain Stimulation (tCS): Models and Technologies,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 21, no. 3, pp. 333–345, May 2013, https://doi.org/10.1109/tnsre.2012.2200046.
  • 57. Y. Yang et al., “The efficacy and safety of third-generation antiseizure medications and non-invasive brain stimulation to treat refractory epilepsy: a systematic review and network meta-analysis study,” Frontiers in neurology, vol. 14, Jan. 2024, https://doi.org/10.3389/fneur.2023.1307296.
  • 58. San-Juan et al., “Transcranial Direct Current Stimulation in Mesial Temporal Lobe Epilepsy and Hippocampal Sclerosis,” Brain Stimulation, vol. 10, no. 1, pp. 28–35, Jan. 2017, https://doi.org/10.1016/j.brs.2016.08.013.
  • 59. San-juan et al., “Transcranial Direct Current Stimulation in Epilepsy,” Brain Stimulation, vol. 8, no. 3, pp. 455–464, May 2015, https://doi.org/10.1016/j.brs.2015.01.001.
  • 60. San-Juan, C. I. Sarmiento, K. M. González, and M. Orenday, “Successful Treatment of a Drug-Resistant Epilepsy by Long-term Transcranial Direct Current Stimulation: A Case Report,” Frontiers in Neurology, vol. 9, Feb. 2018, https://doi.org/10.3389/fneur.2018.00065.
  • 61. H. Seo and Sung Chan Jun, “Relation between the electric field and activation of cortical neurons in transcranial electrical stimulation,” Brain stimulation, vol. 12, no. 2, pp. 275–289, Mar. 2019, https://doi.org/10.1016/j.brs.2018.11.004.
  • 62. J. Silvanto, N. Muggleton, and V. Walsh, “State-dependency in brain stimulation studies of perception and cognition,” Trends in Cognitive Sciences, vol. 12, no. 12, pp. 447–454, Dec. 2008, https://doi.org/10.1016/j.tics.2008.09.004.
  • 63. “Sim4Life» zurich med tech,” Zmt.swiss, 2021. https://zmt.swiss/news-and-events/news/sim4life/ (accessed Jun. 26, 2025).
  • 64. S. Simula et al., “Transcranial current stimulation in epilepsy: A systematic review of the fundamental and clinical aspects,” Frontiers in neuroscience, vol. 16, Aug. 2022, https://doi.org/10.3389/fnins.2022.909421.
  • 65. H. STEINBERG, “Letter to the Editor: Transcranial direct current stimulation (tDCS) has a history reaching back to the 19th century,” Psychological Medicine, vol. 43, no. 3, pp. 669–671, 2013. 10.1017/S0033291712002929
  • 66. P. Sudbrack-Oliveira et al., “Transcranial direct current stimulation (tDCS) in the management of epilepsy: A systematic review,” Seizure, vol. 86, pp. 85–95, Mar. 2021, https://doi.org/10.1016/j.seizure.2021.01.020.
  • 67. P. Tekturk et al., “Transcranial direct current stimulation improves seizure control in patients with Rasmussen encephalitis,” Epileptic Disorders, vol. 18, no. 1, pp. 58–66, Mar. 2016, https://doi.org/10.1684/epd.2016.0796.
  • 68. “The History of Transcranial Direct Current Stimulation (tDCS) - tDCS.com,” Tdcs.com, 2024. https://tdcs.com/history-of-tdcs/
  • 69. Thielscher, A. Antunes, and G. B. Saturnino, “Field modeling for transcranial magnetic stimulation: A useful tool to understand the physiological effects of TMS?,” 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Aug. 2015, https://doi.org/10.1109/embc.2015.7318340.
  • 70. Q. Truong and M. Bikson, “Physics of Transcranial Direct Current Stimulation Devices and Their History,” The Journal of ECT, vol. 34, no. 3, pp. 137–143, Sep. 2018, https://doi.org/10.1097/yct.0000000000000531.
  • 71. T. Varga et al., “Transcranial direct current stimulation in refractory continuous spikes and waves during slow sleep: a controlled study,” Epilepsy research, vol. 97, no. 1–2, pp. 142–5, Nov. 2011, https://doi.org/10.1016/j.eplepsyres.2011.07.016.
  • 72. M. F. Villamar, M. S. Volz, M. Bikson, A. Datta, A. F. DaSilva, and F. Fregni, “Technique and Considerations in the Use of 4x1 Ring High-definition Transcranial Direct Current Stimulation (HD-tDCS),” Journal of Visualized Experiments, no. 77, Jul. 2013, https://doi.org/10.3791/50309.
  • 73. M. F. Villamar et al., “Focal Modulation of the Primary Motor Cortex in Fibromyalgia Using 4×1-Ring High-Definition Transcranial Direct Current Stimulation (HD-tDCS): Immediate and Delayed Analgesic Effects of Cathodal and Anodal Stimulation,” The Journal of Pain, vol. 14, no. 4, pp. 371–383, Apr. 2013, https://doi.org/10.1016/j.jpain.2012.12.007.
  • 74. Wexler, “Recurrent themes in the history of the home use of electrical stimulation: Transcranial direct current stimulation (tDCS) and the medical battery (1870–1920),” Brain Stimulation, vol. 10, no. 2, pp. 187–195, Mar. 2017, https://doi.org/10.1016/j.brs.2016.11.081.
  • 75. Yang et al., “Transcranial Direct Current Stimulation for Patients With Pharmacoresistant Epileptic Spasms: A Pilot Study,” vol. 10, Feb. 2019, https://doi.org/10.3389/fneur.2019.00050.
  • 76. D. Yang et al., “Repeated long sessions of transcranial direct current stimulation reduces seizure frequency in patients with refractory focal epilepsy: An open-label extension study,” Epilepsy & Behavior, vol. 135, p. 108876, Oct. 2022, https://doi.org/10.1016/j.yebeh.2022.108876.
  • 77. D. Yang et al., “Transcranial direct current stimulation reduces seizure frequency in patients with refractory focal epilepsy: A randomized, double-blind, sham-controlled, and three-arm parallel multicenter study,” Brain Stimulation, vol. 13, no. 1, pp. 109–116, Jan. 2020, https://doi.org/10.1016/j.brs.2019.09.006.
  • 78. D. Yang et al., “Transcranial Direct Current Stimulation for Patients With Pharmacoresistant Epileptic Spasms: A Pilot Study,” vol. 10, Feb. 2019, https://doi.org/10.3389/fneur.2019.00050.
  • 79. P. A. Yushkevich et al., “User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability,” NeuroImage, vol. 31, no. 3, pp. 1116–1128, Jul. 2006, https://doi.org/10.1016/j.neuroimage.2006.01.015.
  • 80. Zewdie et al., “Safety and tolerability of transcranial magnetic and direct current stimulation in children: Prospective single center evidence from 3.5 million stimulations,” Brain Stimulation, vol. 13, no. 3, pp. 565–575, May 2020, https://doi.org/10.1016/j.brs.2019.12.025.
  • 81. M. Zoghi, T. J. O’Brien, P. Kwan, M. J. Cook, M. Galea, and S. Jaberzadeh, “Cathodal transcranial direct-current stimulation for treatment of drug-resistant temporal lobe epilepsy: A pilot randomized controlled trial,” Epilepsia Open, vol. 1, no. 3–4, pp. 130–135, Oct. 2016, https://doi.org/10.1002/epi4.12020.
  • 82. M. Zoghi, T. J. O’Brien, P. Kwan, M. J. Cook, M. Galea, and S. Jaberzadeh, “The Effects of Cathodal Transcranial Direct Current Stimulation in a Patient with Drug-Resistant Temporal Lobe Epilepsy (Case Study),” Brain Stimulation, vol. 9, no. 5, pp. 790–792, Sep. 2016, ttps://doi.org/10.1016/j.brs.2016.05.011.
Toplam 82 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Mühendisliği (Diğer)
Bölüm Derleme
Yazarlar

Marya Alhajmohammadothman 0009-0002-7229-2631

Benjamin Sogodam Atadana 0000-0001-6800-6204

Hilal Göktaş 0000-0003-2897-0036

Gönderilme Tarihi 14 Mayıs 2024
Kabul Tarihi 12 Şubat 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 2

Kaynak Göster

APA Alhajmohammadothman, M., Atadana, B. S., & Göktaş, H. (2025). Cathodal tDCS and HD-tDCS neuromodulation techniques in the treatment of patients with Drug resistant epilepsy. Natural and Applied Sciences Journal, 8(2), 81-100. https://doi.org/10.38061/idunas.1483732