Derleme
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 3 Sayı: 2, 13 - 33, 25.12.2020
https://doi.org/10.38061/idunas.782768

Öz

Kaynakça

  • 1. Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: an overview. Biomaterials science 2018; 6 (5): 915‐946. doi: 10.1039/c7bm00765e.
  • 2. Hölzl K, Lin S, Tytgat L, Vlierberghe SV, Gu L et al. Bioink properties before, during and after 3D bioprinting. Biofabrication 2016; 8 (3): 1-19. doi: 10.1088/1758-5090/8/3/032002.
  • 3. Kačarević ŽP, Rider PM, Alkildani S, Retnasingh S, Smeets R et al. An Introduction to 3D Bioprinting: Possibilities, Challenges and Future Aspects. Materials 2018; 11 (11): 2199. doi: 10.3390/ma11112199.
  • 4. Melchels FP, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010; 31 (24): 6121-6130. doi: 10.1016/j.biomaterials.2010.04.050.
  • 5. Chae MP, Rozen WM, McMenamin PG, Findlay MW, Spychal RT et al. Emerging Applications of Bedside 3D Printing in Plastic Surgery. Frontiers in surgery 2015; 2: 25. doi: 10.3389/fsurg.2015.00025.
  • 6. Axpe E, Oyen M. Applications of Alginate-Based Bioinks in 3D Bioprinting. International Journal of Molecular Science 2016; 17 (12): 1976. doi: 10.3390/ijms17121976.
  • 7. Abasalizadeh F, Moghaddam SV, Alizadeh E, Akbari E, Kashani E et al. Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. Journal of biological engineering 2020; 14: 8. doi: 10.1186/s13036-020-0227-7.
  • 8. Lee KY, Mooney DJ. Alginate: Properties and biomedical applications. Progress in Polymer Science 2012; 37 (1): 106-126. doi: 10.1016/j.progpolymsci.2011.06.003.
  • 9. Bendtsen ST, Quinnell SP, Wei M. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. Journal of Biomedical Materials Research Part A 2017; 105 (5): 1457-1468. doi: 10.1002/jbm.a.36036.
  • 10. Zhang YS, Arneri A, Bersini S, Shin SR, Zhu K et al. Bioprinting 3D Microfibrous Scaffolds for Engineering Endothelialized Myocardium and Heart-on-a-Chip. Biomaterials 2016; 110: 45-59. doi: 10.1016/j.biomaterials.2016.09.003.
  • 11. Nguyen D, Hägg DA, Forsman A, Ekholm J, Nimkingratana P et al. Cartilage Tissue Engineering by the 3D Bioprinting of iPS Cells in a Nanocellulose/Alginate Bioink. Scientific Reports 2017; 7: 658. doi: 10.1038/s41598-017-00690-y.
  • 12. Faulkner-Jones A, Fyfe C, Cornelissen DJ, Gardner J, King J et al. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication 2015; 7 (4): 044102. doi: 10.1088/1758-5090/7/4/044102.
  • 13. Kreimendahl, F, Köpf M, Thiebes AL, Duarte Campos DL, Blaeser A et al. 3D-Printing and Angiogenesis: Tailored Agarose-Type I Collagen Blends Comprise 3D Printability and Angiogenesis Potential for Tissue Engineered Substitutes. Tissue Engineering Part C: Methods 2017; 23 (10): doi: 10.1089/ten.TEC.2017.0234.
  • 14. Yang X, Lu Z, Wu H, Li W, Zheng L et al. Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering. Materials Science and Engineering: C 2017; 83: 95-201. doi: 10.1016/j.msec.2017.09.002.
  • 15. Daly AC, Critchley SE, Rencsok EM, Kelly DJ. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Biofabrication 2016; 8 (4): 045002. doi: 10.1088/1758-5090/8/4/045002.
  • 16. Roberts J.J, Martens PJ. 9 - Engineering biosynthetic cell encapsulation systems. In: Poole-Warren L, Martens P, Green R (editors). Biosynthetic Polymers for Medical Applications (Woodhead Publishing Series in Biomaterials). 1st ed. Woodhead Publishing; 2016. pp. 205-239.
  • 17. Kim JE, Kim SH, Jung Y. Current status of three-dimensional printing inks for soft tissue regeneration. Tissue Engineering and Regenerative Medicine 2016; 13: 636-646. doi: 10.1007/s13770-016-0125-8.
  • 18. Isaacson A, Swioklo S, Connon CJ. 3D bioprinting of a corneal stroma equivalent. Experimental Eye Research 2018; 173: 188-193. doi: 10.1016/j.exer.2018.05.010.
  • 19. Bulanova EA, Koudan E, Degosserie J, Heymans C, Pereira F et al. Bioprinting of functional vascularized mouse thyroid gland construct. Biofabrication 2017; 9 (3). doi: 10.1088/1758-5090/aa7fdd.
  • 20. Lee V, Singh G, Trasatti J, Bjornsson C, Xu X et al. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Engineering Part C Methods 2014;. 20 (6): 473-484. doi: 10.1089/ten.TEC.2013.0335.
  • 21. Ahangar P, Cooke M, Weber M, Rosenzweig D. (2019). Current Biomedical Applications of 3D Printing and Additive Manufacturing. Applied Sciences 2019; 9 (8): 1713. doi: 10.3390/app9081713.
  • 22. Panwar A, Tan LP. Current Status of Bioinks for Micro-Extrusion-Based 3D Bioprinting. Molecules 2016; 21 (6): 685. doi: 10.3390/molecules21060685.
  • 23. Noh I, Kim N, Tran HN, Lee J, Lee C. 3D printable hyaluronic acid-based hydrogel for its potential application as a bioink in tissue engineering. Biomaterials Research 2019; 23: 3. doi: 10.1186/s40824-018-0152-8.
  • 24. Merceron T, Murphy S. Hydrogels for 3D Bioprinting Applications. In: Atala A, Yoo JJ (editors). Essentials of 3D Biofabrication and Translation. 1st ed. USA: Academic Press an imprint of Elsevier; 2015. pp. 249-270.
  • 25. Wang X. Advanced Polymers for Three-Dimensional (3D) Organ Bioprinting. Micromachines 2019; 10 (12): 814. doi: 10.3390/mi10120814.
  • 26. Gopinathan J, Noh I. Recent trends in bioinks for 3D printing. Biomaterials Research 2018; 22: 11. doi: 10.1186/s40824-018-0122-1.
  • 27. Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W et al. 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances. Bioactive Materials 2018; 3 (2): 144-156. doi: 10.1016/j.bioactmat.2017.11.008.
  • 28. Turunen S, Kaisto S, Skovorodkin I, Mironov V, Kalpio T, Vainio S et al. 3D bioprinting of the kidney—hype or hope? AIMS Cell and Tissue Engineering 2018; 2 (3): 119-162. doi: 10.3934/celltissue.2018.3.119.
  • 29. Dzobo K, Motaung S, Adesida A. Recent Trends in Decellularized Extracellular Matrix Bioinks for 3D Printing: An Updated Review. International Journal of Molecular Sciences 2019; 20 (18): 4628. doi: 10.3390/ijms20184628.
  • 30. Demirtaş TT, Irmak G, Gümüşderelioğlu M. A bioprintable form of chitosan hydrogel for bone tissue engineering. Biofabrication 2017; 9 (3): 035003. doi: 10.1088/1758-5090/aa7b1d.
  • 31. Zhang Y, Zhou D, Chen J, Zhang X, Li X et al. Biomaterials Based on Marine Resources for 3D Bioprinting Applications. Marine Drugs 2019; 17 (10): 555. doi: 10.3390/md17100555.
  • 32. Ashammakhi N, Ahadian S, Xu C, Montazerian H, Ko H et al. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Materials Today Bio 2019; 1: 100008. doi: 10.1016/j.mtbio.2019.100008.
  • 33. Şendemir AÜ, Seçkin, UD, Görgün C, Uyanıkgil Y. Deri Doku Mühendisliği Üç Boyutlu Biyobaskı ve Keratinosit Kültürü. Dicle Medical Journal 2018; 45 (1): 9-18. doi: 10.5798/dicletip.363931
  • 34. Pati F, Jang J, Ha DH, Won Kim S, Rhie JW et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nature Communications 2014; 5: 3935. doi: 10.1038/ncomms4935.
  • 35. Ahn G, Min K, Kim C, Lee JS, Kang D et al. Precise stacking of decellularized extracellular matrix based 3D cell-laden constructs by a 3D cell printing system equipped with heating modules. Scientific Reports 2017; 7 (1): 8624. doi: 10.1038/s41598-017-09201-5.
  • 36. Kim SH, Yeon YK, Lee JM, Chao JR, Lee YJ et al. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nature Communucations 2018; 9 (1): 2350. doi: 10.1038/s41467-018-03759-y.
  • 37. Dessane B, Smirani R, Bouguéon G, Kauss T, Ribot E et al. Nucleotide lipid-based hydrogel as a new biomaterial ink for biofabrication. Scientific Reports 2020; 10 (1): 2850. doi: 10.1038/s41598-020-59632-w.
  • 38. Kim JH, Kim I, Seol YJ, Ko IK, Yoo JJ et al. Neural cell integration into 3D bioprinted skeletal muscle constructs accelerates restoration of muscle function. Nature Communications 2020; 11 (1): 1025. doi:10.1038/s41467-020-14930-9.
  • 39. Li Z, Huang S, Liu Y, Yao B, Hu T et al. Tuning Alginate-Gelatin Bioink Properties by Varying Solvent and Their Impact on Stem Cell Behavior. Scientific Reports 2018; 8 (1): 8020. doi: 10.1038/s41598-018-26407-3.
  • 40. Ji S, Guvendiren M. Recent Advances in Bioink Design for 3D Bioprinting of Tissues and Organs. Frontiers in bioengineering and biotechnology 2017; 5: 23. doi: 10.3389/fbioe.2017.00023.
  • 41. Hacıoglu A, Yılmazer H, Ustundag CB. 3D printing for tissue engineering applications. Journal of Polytechnic 2018; 21 (1): 221-227. doi: 10.2339/politeknik.389596.
  • 42. Gopinathan J, Noh I. Recent trends in bioinks for 3D printing. Biomaterials research 2018; 22: 11. doi: 10.1186/s40824-018-0122-1.
  • 43. Chimene D, Lennox KK, Kaunas RR, Gaharwar AK. Advanced Bioinks for 3D Printing: A Materials Science Perspective. Annals of Biomedical Engineering 2016; 44 (6): 2090–2102. doi: 10.1007/s10439-016-1638-y.
  • 44. Liu J, Sun L, Xu W, Wang Q, Yu S et al. Current advances and future perspectives of 3D printing natural-derived biopolymers. Carbohydrate Polymers 2018; 207: 297-316. doi:10.1016/j.carbpol.2018.11.077.

Bioinks for Bioprinting Tissues and Organs

Yıl 2020, Cilt: 3 Sayı: 2, 13 - 33, 25.12.2020
https://doi.org/10.38061/idunas.782768

Öz

The use of three-dimensional (3D) printing technology greatly impacted the applications in tissue engineering and regenerative medicine. Especially, recent developments in the bioprinting field hold promise for the production of viable and functional tissues and organs. 3D bioprinting process involves the use of bioinks in the layer-by-layer production of tissues and has such important roles as providing the shape and preserving the cell function and vitality. Bioinks are biomaterials, of natural or synthetic origin, and they mimic the natural extracellular matrix environment for cells to proliferate and differentiate into to form the new tissue. In this review, 3D bioprinting methods and types of bioinks are discussed in detail, with special emphasis on the milestone applications in the bioprinting field.

Kaynakça

  • 1. Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: an overview. Biomaterials science 2018; 6 (5): 915‐946. doi: 10.1039/c7bm00765e.
  • 2. Hölzl K, Lin S, Tytgat L, Vlierberghe SV, Gu L et al. Bioink properties before, during and after 3D bioprinting. Biofabrication 2016; 8 (3): 1-19. doi: 10.1088/1758-5090/8/3/032002.
  • 3. Kačarević ŽP, Rider PM, Alkildani S, Retnasingh S, Smeets R et al. An Introduction to 3D Bioprinting: Possibilities, Challenges and Future Aspects. Materials 2018; 11 (11): 2199. doi: 10.3390/ma11112199.
  • 4. Melchels FP, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010; 31 (24): 6121-6130. doi: 10.1016/j.biomaterials.2010.04.050.
  • 5. Chae MP, Rozen WM, McMenamin PG, Findlay MW, Spychal RT et al. Emerging Applications of Bedside 3D Printing in Plastic Surgery. Frontiers in surgery 2015; 2: 25. doi: 10.3389/fsurg.2015.00025.
  • 6. Axpe E, Oyen M. Applications of Alginate-Based Bioinks in 3D Bioprinting. International Journal of Molecular Science 2016; 17 (12): 1976. doi: 10.3390/ijms17121976.
  • 7. Abasalizadeh F, Moghaddam SV, Alizadeh E, Akbari E, Kashani E et al. Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. Journal of biological engineering 2020; 14: 8. doi: 10.1186/s13036-020-0227-7.
  • 8. Lee KY, Mooney DJ. Alginate: Properties and biomedical applications. Progress in Polymer Science 2012; 37 (1): 106-126. doi: 10.1016/j.progpolymsci.2011.06.003.
  • 9. Bendtsen ST, Quinnell SP, Wei M. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. Journal of Biomedical Materials Research Part A 2017; 105 (5): 1457-1468. doi: 10.1002/jbm.a.36036.
  • 10. Zhang YS, Arneri A, Bersini S, Shin SR, Zhu K et al. Bioprinting 3D Microfibrous Scaffolds for Engineering Endothelialized Myocardium and Heart-on-a-Chip. Biomaterials 2016; 110: 45-59. doi: 10.1016/j.biomaterials.2016.09.003.
  • 11. Nguyen D, Hägg DA, Forsman A, Ekholm J, Nimkingratana P et al. Cartilage Tissue Engineering by the 3D Bioprinting of iPS Cells in a Nanocellulose/Alginate Bioink. Scientific Reports 2017; 7: 658. doi: 10.1038/s41598-017-00690-y.
  • 12. Faulkner-Jones A, Fyfe C, Cornelissen DJ, Gardner J, King J et al. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication 2015; 7 (4): 044102. doi: 10.1088/1758-5090/7/4/044102.
  • 13. Kreimendahl, F, Köpf M, Thiebes AL, Duarte Campos DL, Blaeser A et al. 3D-Printing and Angiogenesis: Tailored Agarose-Type I Collagen Blends Comprise 3D Printability and Angiogenesis Potential for Tissue Engineered Substitutes. Tissue Engineering Part C: Methods 2017; 23 (10): doi: 10.1089/ten.TEC.2017.0234.
  • 14. Yang X, Lu Z, Wu H, Li W, Zheng L et al. Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering. Materials Science and Engineering: C 2017; 83: 95-201. doi: 10.1016/j.msec.2017.09.002.
  • 15. Daly AC, Critchley SE, Rencsok EM, Kelly DJ. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Biofabrication 2016; 8 (4): 045002. doi: 10.1088/1758-5090/8/4/045002.
  • 16. Roberts J.J, Martens PJ. 9 - Engineering biosynthetic cell encapsulation systems. In: Poole-Warren L, Martens P, Green R (editors). Biosynthetic Polymers for Medical Applications (Woodhead Publishing Series in Biomaterials). 1st ed. Woodhead Publishing; 2016. pp. 205-239.
  • 17. Kim JE, Kim SH, Jung Y. Current status of three-dimensional printing inks for soft tissue regeneration. Tissue Engineering and Regenerative Medicine 2016; 13: 636-646. doi: 10.1007/s13770-016-0125-8.
  • 18. Isaacson A, Swioklo S, Connon CJ. 3D bioprinting of a corneal stroma equivalent. Experimental Eye Research 2018; 173: 188-193. doi: 10.1016/j.exer.2018.05.010.
  • 19. Bulanova EA, Koudan E, Degosserie J, Heymans C, Pereira F et al. Bioprinting of functional vascularized mouse thyroid gland construct. Biofabrication 2017; 9 (3). doi: 10.1088/1758-5090/aa7fdd.
  • 20. Lee V, Singh G, Trasatti J, Bjornsson C, Xu X et al. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Engineering Part C Methods 2014;. 20 (6): 473-484. doi: 10.1089/ten.TEC.2013.0335.
  • 21. Ahangar P, Cooke M, Weber M, Rosenzweig D. (2019). Current Biomedical Applications of 3D Printing and Additive Manufacturing. Applied Sciences 2019; 9 (8): 1713. doi: 10.3390/app9081713.
  • 22. Panwar A, Tan LP. Current Status of Bioinks for Micro-Extrusion-Based 3D Bioprinting. Molecules 2016; 21 (6): 685. doi: 10.3390/molecules21060685.
  • 23. Noh I, Kim N, Tran HN, Lee J, Lee C. 3D printable hyaluronic acid-based hydrogel for its potential application as a bioink in tissue engineering. Biomaterials Research 2019; 23: 3. doi: 10.1186/s40824-018-0152-8.
  • 24. Merceron T, Murphy S. Hydrogels for 3D Bioprinting Applications. In: Atala A, Yoo JJ (editors). Essentials of 3D Biofabrication and Translation. 1st ed. USA: Academic Press an imprint of Elsevier; 2015. pp. 249-270.
  • 25. Wang X. Advanced Polymers for Three-Dimensional (3D) Organ Bioprinting. Micromachines 2019; 10 (12): 814. doi: 10.3390/mi10120814.
  • 26. Gopinathan J, Noh I. Recent trends in bioinks for 3D printing. Biomaterials Research 2018; 22: 11. doi: 10.1186/s40824-018-0122-1.
  • 27. Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W et al. 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances. Bioactive Materials 2018; 3 (2): 144-156. doi: 10.1016/j.bioactmat.2017.11.008.
  • 28. Turunen S, Kaisto S, Skovorodkin I, Mironov V, Kalpio T, Vainio S et al. 3D bioprinting of the kidney—hype or hope? AIMS Cell and Tissue Engineering 2018; 2 (3): 119-162. doi: 10.3934/celltissue.2018.3.119.
  • 29. Dzobo K, Motaung S, Adesida A. Recent Trends in Decellularized Extracellular Matrix Bioinks for 3D Printing: An Updated Review. International Journal of Molecular Sciences 2019; 20 (18): 4628. doi: 10.3390/ijms20184628.
  • 30. Demirtaş TT, Irmak G, Gümüşderelioğlu M. A bioprintable form of chitosan hydrogel for bone tissue engineering. Biofabrication 2017; 9 (3): 035003. doi: 10.1088/1758-5090/aa7b1d.
  • 31. Zhang Y, Zhou D, Chen J, Zhang X, Li X et al. Biomaterials Based on Marine Resources for 3D Bioprinting Applications. Marine Drugs 2019; 17 (10): 555. doi: 10.3390/md17100555.
  • 32. Ashammakhi N, Ahadian S, Xu C, Montazerian H, Ko H et al. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Materials Today Bio 2019; 1: 100008. doi: 10.1016/j.mtbio.2019.100008.
  • 33. Şendemir AÜ, Seçkin, UD, Görgün C, Uyanıkgil Y. Deri Doku Mühendisliği Üç Boyutlu Biyobaskı ve Keratinosit Kültürü. Dicle Medical Journal 2018; 45 (1): 9-18. doi: 10.5798/dicletip.363931
  • 34. Pati F, Jang J, Ha DH, Won Kim S, Rhie JW et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nature Communications 2014; 5: 3935. doi: 10.1038/ncomms4935.
  • 35. Ahn G, Min K, Kim C, Lee JS, Kang D et al. Precise stacking of decellularized extracellular matrix based 3D cell-laden constructs by a 3D cell printing system equipped with heating modules. Scientific Reports 2017; 7 (1): 8624. doi: 10.1038/s41598-017-09201-5.
  • 36. Kim SH, Yeon YK, Lee JM, Chao JR, Lee YJ et al. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nature Communucations 2018; 9 (1): 2350. doi: 10.1038/s41467-018-03759-y.
  • 37. Dessane B, Smirani R, Bouguéon G, Kauss T, Ribot E et al. Nucleotide lipid-based hydrogel as a new biomaterial ink for biofabrication. Scientific Reports 2020; 10 (1): 2850. doi: 10.1038/s41598-020-59632-w.
  • 38. Kim JH, Kim I, Seol YJ, Ko IK, Yoo JJ et al. Neural cell integration into 3D bioprinted skeletal muscle constructs accelerates restoration of muscle function. Nature Communications 2020; 11 (1): 1025. doi:10.1038/s41467-020-14930-9.
  • 39. Li Z, Huang S, Liu Y, Yao B, Hu T et al. Tuning Alginate-Gelatin Bioink Properties by Varying Solvent and Their Impact on Stem Cell Behavior. Scientific Reports 2018; 8 (1): 8020. doi: 10.1038/s41598-018-26407-3.
  • 40. Ji S, Guvendiren M. Recent Advances in Bioink Design for 3D Bioprinting of Tissues and Organs. Frontiers in bioengineering and biotechnology 2017; 5: 23. doi: 10.3389/fbioe.2017.00023.
  • 41. Hacıoglu A, Yılmazer H, Ustundag CB. 3D printing for tissue engineering applications. Journal of Polytechnic 2018; 21 (1): 221-227. doi: 10.2339/politeknik.389596.
  • 42. Gopinathan J, Noh I. Recent trends in bioinks for 3D printing. Biomaterials research 2018; 22: 11. doi: 10.1186/s40824-018-0122-1.
  • 43. Chimene D, Lennox KK, Kaunas RR, Gaharwar AK. Advanced Bioinks for 3D Printing: A Materials Science Perspective. Annals of Biomedical Engineering 2016; 44 (6): 2090–2102. doi: 10.1007/s10439-016-1638-y.
  • 44. Liu J, Sun L, Xu W, Wang Q, Yu S et al. Current advances and future perspectives of 3D printing natural-derived biopolymers. Carbohydrate Polymers 2018; 207: 297-316. doi:10.1016/j.carbpol.2018.11.077.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Derlemeler
Yazarlar

Yağmur Can

Rümeysa Karaca

Funda Özbek

Gizem Boz

Açelya Yılmazer Aktuna 0000-0003-2712-7450

Pınar Yılgör Huri 0000-0002-4912-0447

Yayımlanma Tarihi 25 Aralık 2020
Kabul Tarihi 20 Kasım 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 3 Sayı: 2

Kaynak Göster

APA Can, Y., Karaca, R., Özbek, F., Boz, G., vd. (2020). Bioinks for Bioprinting Tissues and Organs. Natural and Applied Sciences Journal, 3(2), 13-33. https://doi.org/10.38061/idunas.782768