Araştırma Makalesi
BibTex RIS Kaynak Göster

Yıl 2025, Cilt: 8 Sayı: 1, 1 - 17, 30.06.2025
https://doi.org/10.38061/idunas.1582691

Öz

Kaynakça

  • 1. Abubakar, I., Aliyu, J.D., Abdullahi, Z., Zubairu, Z., Umar, A.S., Ahmad, F. (2022). Phytochemical screening, nutritional and anti-nutritional composition of aqueous rhizome extract of Curcuma longa, IOSR Journal of Biotechnology and Biochemistry, 8(2), 01–09.
  • 2. Abubakar, I., Muhammad, H. Y., Shuaibu, Y. B. and Abubakar, M. G. (2020). Anti-ulcer activity of methanol extract of the leaves of Hannoa klaineana in rats. Journal of Phytopharmacology, 9(4), 258–264.https://doi.org/10.31254/phyto.2020.9408
  • 3. Abubakar, I., Muhammad, H.Y., Shuaibu,Y.B,, Abubakar, M.G., Hassan, S.W. (2021). Anti-ulcerogenic activity of the fractions of methanol leaves extract of Hannoa klaineana in Wistar rats. International Journal of Pharma and Biosciences, 12(2), 27–40. http://dx.doi.org/10.22376/ijpbs.2021.12.2.p27-40
  • 4. Akkol, E. K., et al. (2011). The potential role of female flowers inflorescence of T. domingensis Pers. in wound management. Journal of Ethnopharmacology, 133(3), 1027–1032.
  • 5. Akram, M. N. Munir, M. Daniyal, C. Egbuna, M.-A. Găman, P. F. Onyekere, A. Olatunde, (2020). Vitamins and minerals: Types, sources and their functions. Springer Nature Switzerland AG 2020 C. Egbuna, G. Dable-Tupas (eds.), Functional Foods and Nutraceuticals, 9, 149–172. https://doi.org/10.1007/978-3-030-42319-3_9
  • 6. Aletor, V.A. (2005). Anti-nutritional factors as nature’s paradox in food and nutrition securities. Inaugural lecture series 15, delivered at the Federal University of Technology, Akure (FUTA)
  • 7. Aljazy, N.A.S., Abdulstar, A.R., Alrakabi, J.M.F. (2021). Analytical study of phytochemicals and antioxidant activity of pollen (T. domingensis Pers.) extracted from the papyrus plant and its use in cake enrichment. Al-Qadisiyah Journal of Agricultural Science, 11, 126–136. doi:10.33794/qjas.2021.132392.1017
  • 8. Allen, M.J., Sharma, S. (2019). Magnesium. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2019 Jan-. Available from: https://www.ncbi.nlm.nih.gov/ books/NBK519036/
  • 9. Ameen, O.A., Hamid, A.A., Yusuf, Q., Njoku, O.G., Oseni, T.O., Jamiu, W. (2021). Quantitative and qualitative assessment of phytochemicals in methanolic extracts of hurricane weed (Phyllanthus amarus Schumach. & Thonn) plant. Journal of Applied Science and Environmental Management. 25(2), 159–165.
  • 10. Anand, U., Jacobo-Herrera, N., Altemimi, A., Lakhssassi, N. (2019). A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential Avenues of Biocompatible Drug Discovery. Metabolites, 9, Article 258. https://doi.org/10.3390/metabo9110258
  • 11. Association of Official Analytical Chemists (AOAC) (1990). Official methods of analysis. 15th Edn., Washington DC, USA. AOAC.
  • 12. Association of Official Analytical Chemists (AOAC). (1999) Official Methods of Analysis of AOAC International. Food Composition, Additives, Natural Contaminants. 16th Edition, AOAC International, Gaithersburg, MD, USA, 35-47.
  • 13. Association of Official Analytical Chemists (AOAC). (2005). Official methods of analysis. Food composition, additives and natural contaminants. Aldric, RC 15th edn. Association of Official Analytical Chemists Inc. USA.
  • 14. Association of Official Analytical Chemists (AOAC). (2010). Official Methods of Analysis. Association of Official Analytical Chemists. (18th Edition). Gaithersburg, USA.
  • 15. Ballard, C.R., Maróstica, M.R. (2018). Health benefits of flavonoids. In Bioactive Compounds: Health Benefits and Potential Applications; Segura-Campos, M.R., Ed.; Elsevier Inc.: Amsterdam. The Netherlands, 185–201. http://doi.org/10.1016/B978-0-12-8147740.00010-4
  • 16. Baltaci, A.K., Yuce, K., Mogulkoc, R. (2018). Zinc metabolism and metallothioneins, Biology and Trace Elements Research, 183, 22–31.
  • 17. Bandaranayake, W.M. (1998). Traditional and medicinal uses of mangroves. Mangroves and Salt Marshes, 2(3), 133–148. doi:10.1023/A:1009988607044.
  • 18. Brewer, M.S. (2011). Natural antioxidants: Sources, compounds, mechanism of action and potential applications, Comparative Reviews in Food Science and Food Safety, 10(4), 221–247.
  • 19. Catharine, R.H.B., Christine, L.T., Ann, L.Y, (2018), Dietary reference intakes for vitamin D and calcium. Food Nutrition Board, 356, 1053–1061.
  • 20. Center for Agriculture and Bioscience International (2013). Steven Hall. In: Invasive Species Compendium. Wallingford, UK: CAB International. www.cabi.org/isc on 3 April 2016.
  • 21. Chai, T., Mohan, M., Ong , H., Wong, F. (2014). Antioxidant, iron-chelating and anti-glucosidase activities of Typha domingensis Pers (Typhaceae). Tropical Journal of Pharmaceutical Research, 13(1), 67–72.
  • 22. Denwick, P.M. (2002). Natural Products: A Biosynthetic Approach, 2nd ed. John Wiley and Sons Ltd, England.
  • 23. El-Olemyl, M.M., Fraid, J.A., Abdulfattah, A.A. (1994). Experimental photochemistry. A laboratory manual Afifi, Abdel Fattah, A comp., IV King Saud university press, UK, pp 1-134.
  • 24. Elsken, K. (2020). Studies Consider Use of Aquatic Plants to Feed Livestock. Retrieved from https://www.southcentralfloridalife.com on 28/10/2021
  • 25. Evans, W.C. (1996). Commerce and production: principles related to the commercial production, quality and standardization of natural products. In: Trease GE & Evans WC (Editors), Pharmacognosy. 14th edn. Saunders, London.
  • 26. Felix, J.P., Mello, D. (2000). Farm Animal Metabolism and Nutrition. United Kingdom: CABI. 27. Gemede, H.F., Ratta, N. (2014). Antinutritional factors in plant foods: Potential health benefits and adverse effects. IJNFS, 3(4), 284–289. http://doi.org/10.11648/j.ijnfs.20140304.18
  • 28. Gragossian, A., Friede, R. (2019). Hypomagnesemia. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2019 Jan-. Available from: https://www.ncbi.nlm. nih.gov/books/NBK500003/
  • 29. Gravalos, I., Kateris, D., Xyradakis, P., Gialamas, T., Loutridis, S., Augousti, A., Tsiropoulos, Z. (2010). A study on calorific energy values of biomass residue pellets for heating purposes. In Proceedings on Forest Engineering: Meeting the Needs of the Society and the Environment, Padova, Italy (Vol. 1114)
  • 30. Grosshans, R.E. (2014). Cattail (Typha Spp.) Biomass Harvesting for Nutrient Capture and Sustainable Bioenergy for Integrated Watershed Management.
  • 31. Gupta, S., Lakshmia, A.J., Manjunathb, M.N., Prakash, J. (2005). Analysis of nutrient and anti-nutrient content of underutilized green leafy vegetables. LWT-Food Science and Technology, 38, 339–345. http://doi.org/10.1016/j.lwt.2004.06.012
  • 32. Harborne, J.B. (1973). Phytochemical methods: A Guide to Modern Techniques of plant Analysis. Chapman and Hall Ltd, London. pp. 279.
  • 33. He, D., Simoneit, B.R.T., Jara, B., Jaffé, R. (2015). Gas chromatography mass spectrometry based profiling of alkyl coumarates and ferulates in two species of cattail (T. domingensis P., and Typha latifolia L.). Phytochemistry Letters, 13, 91–98. doi:10.1016/j.phytol.2015.05.010.
  • 34. Hendek, M., Ertop, M. (2018). Bektaş enhancement of bioavailable micronutrients and reduction of antinutrients in foods with some processes. Food Heal, 4(3), 159–165.
  • 35. Ibrahim, I.B., Abubakar, I., Ibrahim, S., Adiya, Z.S., Buhari, H.B., Shehu, S.R. (2024). Phytochemicals screening, proximate composition and anti-oxidants analysis of Italian Citrus paradisi Fruits. Journal of Tropical Pharmacy and Chemistry, 8(1), 2087–7099. https://doi.org/10.25026/jtpc.v8i1.629
  • 36. Ikewuchi, C.C. (2012). Hypocholesterolemic effect of an aqueous extract of the leaves of Sansevieria senegambica Baker on plasma lipid profile and atherogenic indices of rats fed egg yolk supplemented diet. EXCLI J., 11, 346–356.
  • 37. Imran, I., Javed, T., Jabeen, A. (1998). Synthesis, characterization and docking studies of amide ligands as anti-leishmanial agents. Pakistan Journal of Pharmaceutical Sciences, 33(1), 385–392.
  • 38. Johnson, I.T., Gee, J.M., Price, K., Curl, C., Fenwick, G.R. (1986). Influence of saponins on gut permeability and active nutrient transport in vitro. Journal of Nutrition, 116(11), 2270–2277.
  • 39. Kar, A. (2007). Pharmacognosy and Pharmabiotechnology (Revised- Expanded Second Edition). New Age International Limited Publishers, New Delhi, pp 332-360.
  • 40. Khan, M.S., Ahmad, I. (2019). New Look to Phytomedicine . Elsevier. Herbal medicine: current trends and future prospects; pp. 3–13.
  • 41. Kimura, T., Kambe, T. (2016). The functions of metallothionein and ZIP and ZnT transporters: an overview and perspective. International Journal of Molecular Science, 17, 336.
  • 42. Kumar, M., Prakash, S., Kumari, N. (2021). Beneficial role of antioxidant secondary metabolites from medicinal plants in maintaining oral health. Antioxidants, 10 (7), 1061. doi:10.3390/antiox10071061.
  • 43. Kumar, V., Sinha, A.K., Makkar, H.P.S. (2010). Dietary roles of phytate and phytase in human nutrition: A review. Food Chemistry, 945–959.
  • 44. Lattimer, J.M., Haub, M.D. (2010). Effects of dietary fiber and its components on metabolic health. Nutrients, 2(12), 1266–1289. doi:10.3390/nu2121266
  • 45. Leone, N., Courbon, D., Ducimetiere, P., Zureik, M. (2006). Zinc, copper, and magnesium and risks for all-cause, cancer, and cardiovascular mortality. Epidemiology, 17(3), 308–314.
  • 46. Liener, I.E. (2003). Phytohemagglutinins: Their nutritional significance. Journal of Agriculture and Food Chemistry, 22, 17.
  • 47. Lopes, A., Rodrigues, M.J., Pereira, C., (2016). Natural products from extreme marine environments: searching for potential industrial uses within extremophile plants. Industrial Crops and Products, 94, 299–307. doi:10.1016/j.indcrop.2016.08.040.
  • 48. Majeed, M., Vladimir, B., Murray, F. (2004). Turmeric and the healing curcuminoids: Their amazing antioxidant properties and protective powers, New Canaan CT: Keats Pub. 49. Mamta, S., Jyoti, S., Rajeev, N., Dharmendra, S., Abhishek, G. (2013). Phytochemistry of medicinal plants, Journal of Pharmacognosy and Phytochemistry, 1(6), 168–182.
  • 50. Masum, A.S., Akond, M.G., Crawford, H., Berthold, J., Talukder, Z.I., Hossain K. (2011). Minerals (Zn, Fe, Ca and Mg) and antinutrient (Phytic acid) constituents in common bean. American Journal of Food Technology, 6(3), 235–243.
  • 51. Mosa, E.O., Elhadi, M.A., Mahgoub, S.E. (2012). Preliminary phytochemical evaluation and seed proximate analysis of Surib (Sesbanialeptocarpa DC.) SJMS, 7(4), 29-34.
  • 52. Murray, R.K., Granner, D.K., Mayes, P.A., Rodwell, V.W. (2000). Harper’s Biochemistry, 25th Edition, McGraw-Hill, Health Profession Division, USA.
  • 53. Nachbar, M.S., Oppenheim, J.D., Thomas, J.O. (2000). Lectins in the US diet: Isolation and characterization of a lectin from the tomato (Lycopersicon). Journal of Biology and Chemistry, 255, 2056.
  • 54. Ndanyi, M. K., Kamau, D., Karanja, S. (2021). Phytochemical screening and acute oral toxicity study of Myrica Salicifolia (Bayberry) root extracts. Journal of Pharmacy and Biological Sciences, 16, 1–5. https://doi.org/10.9790/3008-1602010105
  • 55. Ogbuagu, M.N., Odoemelam, S.A., Ano, A. (2011). The chemical composition of an under-utilized tropical african seed: Adenanthera pavonina. Journal of Chemical Society of Nigeria, 36(1), 23–28.
  • 56. Oghenejobo, M., Opajobi, O. A., Bethel, O.U.S. (2017). Antibacterial evaluation, phytochemical screening and ascorbic acid assay of turmeric (Curcuma longa). MOJ Bioequiv Availability, 4 (2), 232–239. 57. Okaka, J.A. (2001). Food Composition, Spoilage and Shelf Life Extension. Ocy. Academic Publishers, pp. 54-56.
  • 58. Ola, F.L., Oboh, G. (2000). Anti-nutritional factors in nutritional quality of plant foods. Journal of Technology, 4, 1–3.
  • 59. Olivia, N. U., Goodness, U. C., Obinna, O. M. (2021). Phytochemical profiling and GC-MS analysis of aqueous methanol fraction of Hibiscus asper leaves. Future Journal of Pharmaceutical Sciences, 7(1), 208–214. https://doi.org/10.1186/s43094-021-00208-4
  • 60. Onwuka, G.l. (2005). Food analysis and instrumentation. Theory and practice. 1st edition, Naphthali Prints Nigeria, pp 1-129.
  • 61. Pandey, A., Verma, R. (2018). Taxonomical and pharmacological status of Typha: a review. Annal of Plant Science, 7, 2101–2106. doi:10.21746/aps.2018.7.3.2
  • 62. Qin, F., Sun, H.X. (2005). Immunosuppressive activity of Pollen typhae ethanol extract on the immune responses in mice. Journal of Ethnopharmacology, 102(3), 424 – 429.
  • 63. Reddy, M.B., Love, M. (1999). The impacts of food processing on the nutritional quality of vitamins and minerals. Advance Experiments on Medicine and Biology, 459, 99–106. http://doi.org/10.1007/978-1-4615-4853-9_7
  • 64. Robert, K.M., Daryl, K.G., Peter, A.M. Victor, W.R. (2003). Harper’s Illustrated Biochemistry. In Benders and Mayes Vitamins and Minerals, Lange Medical Books/McGraw-Hill, Medical Publishing Division, New York.496. 65. Salunkhe, D.K., Chavan, J.K., Kaden, S.S. (1990). Dietary tannins: Consequences and remedies. CRC Press, Boca Roton, FL.
  • 66. Solich, P., Sedliakova, V., Karlicek, R. (1992). Spectrophotometric determination of cardiac glycosides by flow-injection analysis. Anal Chim Acta, 269(2), 199–203.
  • 67. Tham, H. T. and Udén, P. (2013). Effect of water hyacinth (Eichhornia crassipes) silage on intake and nutrient digestibility in cattle fed rice straw and cottonseed cake. Asian - Australasian Journal of Animal Sciences, 26(5), 646.
  • 68. Trease, G.E., Evans, W.C. (1989). Pharmacognosy. 13th Edition, Bailere Traiadal, London, p.69.
  • 69. Tuschl, K., Mills, P.B., Clayton, P.T. (2013). Manganese and the brain. International Review Neurobiology, 110, 277–312.
  • 70. Unuofin, J.O., Otunola, G.A., Afolayan, A.J. (2017). Essential oil composition, nutrient and anti-nutrient analysis of Vernonia mespilifolia Less. Research Journal of Botony, 12(2), 38–45. https://doi.org/10.3923/rjb.2017.38.45
  • 71. Vincente, A.R., Manganaris, G.A., Ortiz, C.M., Sozzi, G.O., Crisosto, C.H. (2014). Nutritional quality of fruits and vegetables, Postharvest Handling: A Systems Approach, 69–122.
  • 72. Wadhave, A.A., Jadhav, A.I., Arsul, V.A. (2014). Plant proteins applications: A review. WJPPS, 3(3), 702–712. 73. Weaver, C.M. (2013). Potassium and health. Advance Nutrition, 4(3), 368S–377S.
  • 74. Xu, Z., Chang, L. (2017). Identification and control of common weeds: Springer. Typhaceae; 3, 725–731.
  • 75. Yiannikourides, A., Latunde-Dada, G.O. (2019). A Short review of iron metabolism and pathophysiology of iron disorders. Medicines, 6(3), 85-100. http://doi.org/10.3390/medicines6030085
  • 76. Zeece, M. (2020). Vitamins and minerals, Introduction to the Chemistry of Food, 163–212.
  • 77. Zeng, G., Wu, Z., Cao, W., Wang, Y., Deng, X., Zhou, Y. (2020). Identification of antinociceptive constituents from the pollen of Typha angustifolia L. Using effect-directed fractionation. Natural Products Research, 34, 1041–1045. doi:10.1080/14786419.2018.1539979

Phytochemicals, Nutrients and Anti-Nutrients Composition of the Aqueous Roots and Stem Extract of Typha Domingensis

Yıl 2025, Cilt: 8 Sayı: 1, 1 - 17, 30.06.2025
https://doi.org/10.38061/idunas.1582691

Öz

Medicinal plants contain various phytoconstituents and have nutritional benefits, medicinal properties, and pharmacological activities. Typha domingensis has been used as source of foods and in the treatment of many diseases including wounds, anxiety, depression, and bleeding disorders. The aim of this study is to evaluate the phytochemicals, nutrients and anti-nutrients contents of the aqueous roots and stem extract of Typha domingensis. Phytochemicals, proximate, minerals and anti-nutrients composition were determined using standard analytical methods. The results revealed that aqueous roots and stem extract of T. domingensis demonstrated significant (p < 0.05) amount of glycosides (8.50 and 22.05 %), saponins (5.32 and 6.01 %), alkaloids (2.87 and 6.80 %), flavonoids (2.81 and 5.63 %), cardiac glycosides (1.73 and 7.41 %), steroids (5.44 and 1.90 %), and tannins (2.29 and 2.50 %), respectively. A significant (p < 0.05) amounts moisture (55.30 and 28.21%), fiber (34.77 and 19.50 %), carbohydrates (25.99 and 20.29), ash (20.41 and 11.40 %), lipids (7.82and 5.06 %) and protein (4.96 and 2.88 %) were found in the aqueous roots and stem extract of T. domingensis, respectively. The aqueous roots and stem extract of T. domingensis demonstrated higher significant (p < 0.05) levels of calcium, sodium, iron, potassium, magnesium, aluminium, zinc, copper, manganese, cobalt with trace amount of nickel, lead, and cadmium. However, the amount of the phytochemicals and the nutrients was significantly (p < 0.05) higher in the aqueous roots extract of T. domingensis compared to the stem extract. A trace amount of oxalate, tannins, phytate, and cyanide was found in the aqueous roots and stem extract of T. domingensis. The aqueous roots and stem extract of T. domingensis contains significant amount of phytochemicals and nutrients which could be attributed to its nutritional value and medicinal properties.

Kaynakça

  • 1. Abubakar, I., Aliyu, J.D., Abdullahi, Z., Zubairu, Z., Umar, A.S., Ahmad, F. (2022). Phytochemical screening, nutritional and anti-nutritional composition of aqueous rhizome extract of Curcuma longa, IOSR Journal of Biotechnology and Biochemistry, 8(2), 01–09.
  • 2. Abubakar, I., Muhammad, H. Y., Shuaibu, Y. B. and Abubakar, M. G. (2020). Anti-ulcer activity of methanol extract of the leaves of Hannoa klaineana in rats. Journal of Phytopharmacology, 9(4), 258–264.https://doi.org/10.31254/phyto.2020.9408
  • 3. Abubakar, I., Muhammad, H.Y., Shuaibu,Y.B,, Abubakar, M.G., Hassan, S.W. (2021). Anti-ulcerogenic activity of the fractions of methanol leaves extract of Hannoa klaineana in Wistar rats. International Journal of Pharma and Biosciences, 12(2), 27–40. http://dx.doi.org/10.22376/ijpbs.2021.12.2.p27-40
  • 4. Akkol, E. K., et al. (2011). The potential role of female flowers inflorescence of T. domingensis Pers. in wound management. Journal of Ethnopharmacology, 133(3), 1027–1032.
  • 5. Akram, M. N. Munir, M. Daniyal, C. Egbuna, M.-A. Găman, P. F. Onyekere, A. Olatunde, (2020). Vitamins and minerals: Types, sources and their functions. Springer Nature Switzerland AG 2020 C. Egbuna, G. Dable-Tupas (eds.), Functional Foods and Nutraceuticals, 9, 149–172. https://doi.org/10.1007/978-3-030-42319-3_9
  • 6. Aletor, V.A. (2005). Anti-nutritional factors as nature’s paradox in food and nutrition securities. Inaugural lecture series 15, delivered at the Federal University of Technology, Akure (FUTA)
  • 7. Aljazy, N.A.S., Abdulstar, A.R., Alrakabi, J.M.F. (2021). Analytical study of phytochemicals and antioxidant activity of pollen (T. domingensis Pers.) extracted from the papyrus plant and its use in cake enrichment. Al-Qadisiyah Journal of Agricultural Science, 11, 126–136. doi:10.33794/qjas.2021.132392.1017
  • 8. Allen, M.J., Sharma, S. (2019). Magnesium. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2019 Jan-. Available from: https://www.ncbi.nlm.nih.gov/ books/NBK519036/
  • 9. Ameen, O.A., Hamid, A.A., Yusuf, Q., Njoku, O.G., Oseni, T.O., Jamiu, W. (2021). Quantitative and qualitative assessment of phytochemicals in methanolic extracts of hurricane weed (Phyllanthus amarus Schumach. & Thonn) plant. Journal of Applied Science and Environmental Management. 25(2), 159–165.
  • 10. Anand, U., Jacobo-Herrera, N., Altemimi, A., Lakhssassi, N. (2019). A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential Avenues of Biocompatible Drug Discovery. Metabolites, 9, Article 258. https://doi.org/10.3390/metabo9110258
  • 11. Association of Official Analytical Chemists (AOAC) (1990). Official methods of analysis. 15th Edn., Washington DC, USA. AOAC.
  • 12. Association of Official Analytical Chemists (AOAC). (1999) Official Methods of Analysis of AOAC International. Food Composition, Additives, Natural Contaminants. 16th Edition, AOAC International, Gaithersburg, MD, USA, 35-47.
  • 13. Association of Official Analytical Chemists (AOAC). (2005). Official methods of analysis. Food composition, additives and natural contaminants. Aldric, RC 15th edn. Association of Official Analytical Chemists Inc. USA.
  • 14. Association of Official Analytical Chemists (AOAC). (2010). Official Methods of Analysis. Association of Official Analytical Chemists. (18th Edition). Gaithersburg, USA.
  • 15. Ballard, C.R., Maróstica, M.R. (2018). Health benefits of flavonoids. In Bioactive Compounds: Health Benefits and Potential Applications; Segura-Campos, M.R., Ed.; Elsevier Inc.: Amsterdam. The Netherlands, 185–201. http://doi.org/10.1016/B978-0-12-8147740.00010-4
  • 16. Baltaci, A.K., Yuce, K., Mogulkoc, R. (2018). Zinc metabolism and metallothioneins, Biology and Trace Elements Research, 183, 22–31.
  • 17. Bandaranayake, W.M. (1998). Traditional and medicinal uses of mangroves. Mangroves and Salt Marshes, 2(3), 133–148. doi:10.1023/A:1009988607044.
  • 18. Brewer, M.S. (2011). Natural antioxidants: Sources, compounds, mechanism of action and potential applications, Comparative Reviews in Food Science and Food Safety, 10(4), 221–247.
  • 19. Catharine, R.H.B., Christine, L.T., Ann, L.Y, (2018), Dietary reference intakes for vitamin D and calcium. Food Nutrition Board, 356, 1053–1061.
  • 20. Center for Agriculture and Bioscience International (2013). Steven Hall. In: Invasive Species Compendium. Wallingford, UK: CAB International. www.cabi.org/isc on 3 April 2016.
  • 21. Chai, T., Mohan, M., Ong , H., Wong, F. (2014). Antioxidant, iron-chelating and anti-glucosidase activities of Typha domingensis Pers (Typhaceae). Tropical Journal of Pharmaceutical Research, 13(1), 67–72.
  • 22. Denwick, P.M. (2002). Natural Products: A Biosynthetic Approach, 2nd ed. John Wiley and Sons Ltd, England.
  • 23. El-Olemyl, M.M., Fraid, J.A., Abdulfattah, A.A. (1994). Experimental photochemistry. A laboratory manual Afifi, Abdel Fattah, A comp., IV King Saud university press, UK, pp 1-134.
  • 24. Elsken, K. (2020). Studies Consider Use of Aquatic Plants to Feed Livestock. Retrieved from https://www.southcentralfloridalife.com on 28/10/2021
  • 25. Evans, W.C. (1996). Commerce and production: principles related to the commercial production, quality and standardization of natural products. In: Trease GE & Evans WC (Editors), Pharmacognosy. 14th edn. Saunders, London.
  • 26. Felix, J.P., Mello, D. (2000). Farm Animal Metabolism and Nutrition. United Kingdom: CABI. 27. Gemede, H.F., Ratta, N. (2014). Antinutritional factors in plant foods: Potential health benefits and adverse effects. IJNFS, 3(4), 284–289. http://doi.org/10.11648/j.ijnfs.20140304.18
  • 28. Gragossian, A., Friede, R. (2019). Hypomagnesemia. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2019 Jan-. Available from: https://www.ncbi.nlm. nih.gov/books/NBK500003/
  • 29. Gravalos, I., Kateris, D., Xyradakis, P., Gialamas, T., Loutridis, S., Augousti, A., Tsiropoulos, Z. (2010). A study on calorific energy values of biomass residue pellets for heating purposes. In Proceedings on Forest Engineering: Meeting the Needs of the Society and the Environment, Padova, Italy (Vol. 1114)
  • 30. Grosshans, R.E. (2014). Cattail (Typha Spp.) Biomass Harvesting for Nutrient Capture and Sustainable Bioenergy for Integrated Watershed Management.
  • 31. Gupta, S., Lakshmia, A.J., Manjunathb, M.N., Prakash, J. (2005). Analysis of nutrient and anti-nutrient content of underutilized green leafy vegetables. LWT-Food Science and Technology, 38, 339–345. http://doi.org/10.1016/j.lwt.2004.06.012
  • 32. Harborne, J.B. (1973). Phytochemical methods: A Guide to Modern Techniques of plant Analysis. Chapman and Hall Ltd, London. pp. 279.
  • 33. He, D., Simoneit, B.R.T., Jara, B., Jaffé, R. (2015). Gas chromatography mass spectrometry based profiling of alkyl coumarates and ferulates in two species of cattail (T. domingensis P., and Typha latifolia L.). Phytochemistry Letters, 13, 91–98. doi:10.1016/j.phytol.2015.05.010.
  • 34. Hendek, M., Ertop, M. (2018). Bektaş enhancement of bioavailable micronutrients and reduction of antinutrients in foods with some processes. Food Heal, 4(3), 159–165.
  • 35. Ibrahim, I.B., Abubakar, I., Ibrahim, S., Adiya, Z.S., Buhari, H.B., Shehu, S.R. (2024). Phytochemicals screening, proximate composition and anti-oxidants analysis of Italian Citrus paradisi Fruits. Journal of Tropical Pharmacy and Chemistry, 8(1), 2087–7099. https://doi.org/10.25026/jtpc.v8i1.629
  • 36. Ikewuchi, C.C. (2012). Hypocholesterolemic effect of an aqueous extract of the leaves of Sansevieria senegambica Baker on plasma lipid profile and atherogenic indices of rats fed egg yolk supplemented diet. EXCLI J., 11, 346–356.
  • 37. Imran, I., Javed, T., Jabeen, A. (1998). Synthesis, characterization and docking studies of amide ligands as anti-leishmanial agents. Pakistan Journal of Pharmaceutical Sciences, 33(1), 385–392.
  • 38. Johnson, I.T., Gee, J.M., Price, K., Curl, C., Fenwick, G.R. (1986). Influence of saponins on gut permeability and active nutrient transport in vitro. Journal of Nutrition, 116(11), 2270–2277.
  • 39. Kar, A. (2007). Pharmacognosy and Pharmabiotechnology (Revised- Expanded Second Edition). New Age International Limited Publishers, New Delhi, pp 332-360.
  • 40. Khan, M.S., Ahmad, I. (2019). New Look to Phytomedicine . Elsevier. Herbal medicine: current trends and future prospects; pp. 3–13.
  • 41. Kimura, T., Kambe, T. (2016). The functions of metallothionein and ZIP and ZnT transporters: an overview and perspective. International Journal of Molecular Science, 17, 336.
  • 42. Kumar, M., Prakash, S., Kumari, N. (2021). Beneficial role of antioxidant secondary metabolites from medicinal plants in maintaining oral health. Antioxidants, 10 (7), 1061. doi:10.3390/antiox10071061.
  • 43. Kumar, V., Sinha, A.K., Makkar, H.P.S. (2010). Dietary roles of phytate and phytase in human nutrition: A review. Food Chemistry, 945–959.
  • 44. Lattimer, J.M., Haub, M.D. (2010). Effects of dietary fiber and its components on metabolic health. Nutrients, 2(12), 1266–1289. doi:10.3390/nu2121266
  • 45. Leone, N., Courbon, D., Ducimetiere, P., Zureik, M. (2006). Zinc, copper, and magnesium and risks for all-cause, cancer, and cardiovascular mortality. Epidemiology, 17(3), 308–314.
  • 46. Liener, I.E. (2003). Phytohemagglutinins: Their nutritional significance. Journal of Agriculture and Food Chemistry, 22, 17.
  • 47. Lopes, A., Rodrigues, M.J., Pereira, C., (2016). Natural products from extreme marine environments: searching for potential industrial uses within extremophile plants. Industrial Crops and Products, 94, 299–307. doi:10.1016/j.indcrop.2016.08.040.
  • 48. Majeed, M., Vladimir, B., Murray, F. (2004). Turmeric and the healing curcuminoids: Their amazing antioxidant properties and protective powers, New Canaan CT: Keats Pub. 49. Mamta, S., Jyoti, S., Rajeev, N., Dharmendra, S., Abhishek, G. (2013). Phytochemistry of medicinal plants, Journal of Pharmacognosy and Phytochemistry, 1(6), 168–182.
  • 50. Masum, A.S., Akond, M.G., Crawford, H., Berthold, J., Talukder, Z.I., Hossain K. (2011). Minerals (Zn, Fe, Ca and Mg) and antinutrient (Phytic acid) constituents in common bean. American Journal of Food Technology, 6(3), 235–243.
  • 51. Mosa, E.O., Elhadi, M.A., Mahgoub, S.E. (2012). Preliminary phytochemical evaluation and seed proximate analysis of Surib (Sesbanialeptocarpa DC.) SJMS, 7(4), 29-34.
  • 52. Murray, R.K., Granner, D.K., Mayes, P.A., Rodwell, V.W. (2000). Harper’s Biochemistry, 25th Edition, McGraw-Hill, Health Profession Division, USA.
  • 53. Nachbar, M.S., Oppenheim, J.D., Thomas, J.O. (2000). Lectins in the US diet: Isolation and characterization of a lectin from the tomato (Lycopersicon). Journal of Biology and Chemistry, 255, 2056.
  • 54. Ndanyi, M. K., Kamau, D., Karanja, S. (2021). Phytochemical screening and acute oral toxicity study of Myrica Salicifolia (Bayberry) root extracts. Journal of Pharmacy and Biological Sciences, 16, 1–5. https://doi.org/10.9790/3008-1602010105
  • 55. Ogbuagu, M.N., Odoemelam, S.A., Ano, A. (2011). The chemical composition of an under-utilized tropical african seed: Adenanthera pavonina. Journal of Chemical Society of Nigeria, 36(1), 23–28.
  • 56. Oghenejobo, M., Opajobi, O. A., Bethel, O.U.S. (2017). Antibacterial evaluation, phytochemical screening and ascorbic acid assay of turmeric (Curcuma longa). MOJ Bioequiv Availability, 4 (2), 232–239. 57. Okaka, J.A. (2001). Food Composition, Spoilage and Shelf Life Extension. Ocy. Academic Publishers, pp. 54-56.
  • 58. Ola, F.L., Oboh, G. (2000). Anti-nutritional factors in nutritional quality of plant foods. Journal of Technology, 4, 1–3.
  • 59. Olivia, N. U., Goodness, U. C., Obinna, O. M. (2021). Phytochemical profiling and GC-MS analysis of aqueous methanol fraction of Hibiscus asper leaves. Future Journal of Pharmaceutical Sciences, 7(1), 208–214. https://doi.org/10.1186/s43094-021-00208-4
  • 60. Onwuka, G.l. (2005). Food analysis and instrumentation. Theory and practice. 1st edition, Naphthali Prints Nigeria, pp 1-129.
  • 61. Pandey, A., Verma, R. (2018). Taxonomical and pharmacological status of Typha: a review. Annal of Plant Science, 7, 2101–2106. doi:10.21746/aps.2018.7.3.2
  • 62. Qin, F., Sun, H.X. (2005). Immunosuppressive activity of Pollen typhae ethanol extract on the immune responses in mice. Journal of Ethnopharmacology, 102(3), 424 – 429.
  • 63. Reddy, M.B., Love, M. (1999). The impacts of food processing on the nutritional quality of vitamins and minerals. Advance Experiments on Medicine and Biology, 459, 99–106. http://doi.org/10.1007/978-1-4615-4853-9_7
  • 64. Robert, K.M., Daryl, K.G., Peter, A.M. Victor, W.R. (2003). Harper’s Illustrated Biochemistry. In Benders and Mayes Vitamins and Minerals, Lange Medical Books/McGraw-Hill, Medical Publishing Division, New York.496. 65. Salunkhe, D.K., Chavan, J.K., Kaden, S.S. (1990). Dietary tannins: Consequences and remedies. CRC Press, Boca Roton, FL.
  • 66. Solich, P., Sedliakova, V., Karlicek, R. (1992). Spectrophotometric determination of cardiac glycosides by flow-injection analysis. Anal Chim Acta, 269(2), 199–203.
  • 67. Tham, H. T. and Udén, P. (2013). Effect of water hyacinth (Eichhornia crassipes) silage on intake and nutrient digestibility in cattle fed rice straw and cottonseed cake. Asian - Australasian Journal of Animal Sciences, 26(5), 646.
  • 68. Trease, G.E., Evans, W.C. (1989). Pharmacognosy. 13th Edition, Bailere Traiadal, London, p.69.
  • 69. Tuschl, K., Mills, P.B., Clayton, P.T. (2013). Manganese and the brain. International Review Neurobiology, 110, 277–312.
  • 70. Unuofin, J.O., Otunola, G.A., Afolayan, A.J. (2017). Essential oil composition, nutrient and anti-nutrient analysis of Vernonia mespilifolia Less. Research Journal of Botony, 12(2), 38–45. https://doi.org/10.3923/rjb.2017.38.45
  • 71. Vincente, A.R., Manganaris, G.A., Ortiz, C.M., Sozzi, G.O., Crisosto, C.H. (2014). Nutritional quality of fruits and vegetables, Postharvest Handling: A Systems Approach, 69–122.
  • 72. Wadhave, A.A., Jadhav, A.I., Arsul, V.A. (2014). Plant proteins applications: A review. WJPPS, 3(3), 702–712. 73. Weaver, C.M. (2013). Potassium and health. Advance Nutrition, 4(3), 368S–377S.
  • 74. Xu, Z., Chang, L. (2017). Identification and control of common weeds: Springer. Typhaceae; 3, 725–731.
  • 75. Yiannikourides, A., Latunde-Dada, G.O. (2019). A Short review of iron metabolism and pathophysiology of iron disorders. Medicines, 6(3), 85-100. http://doi.org/10.3390/medicines6030085
  • 76. Zeece, M. (2020). Vitamins and minerals, Introduction to the Chemistry of Food, 163–212.
  • 77. Zeng, G., Wu, Z., Cao, W., Wang, Y., Deng, X., Zhou, Y. (2020). Identification of antinociceptive constituents from the pollen of Typha angustifolia L. Using effect-directed fractionation. Natural Products Research, 34, 1041–1045. doi:10.1080/14786419.2018.1539979
Toplam 72 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyokimya ve Hücre Biyolojisi (Diğer)
Bölüm Makaleler
Yazarlar

Jabir Danyaya Aliyu 0000-0003-0718-0107

Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 14 Kasım 2024
Kabul Tarihi 14 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 1

Kaynak Göster

APA Aliyu, J. D. (2025). Phytochemicals, Nutrients and Anti-Nutrients Composition of the Aqueous Roots and Stem Extract of Typha Domingensis. Natural and Applied Sciences Journal, 8(1), 1-17. https://doi.org/10.38061/idunas.1582691