Araştırma Makalesi
BibTex RIS Kaynak Göster

AN INEXPENSIVE TENSILE TEST MACHINE

Yıl 2025, Cilt: 8 Sayı: 1, 33 - 43, 30.06.2025
https://doi.org/10.38061/idunas.1595305

Öz

Tensile testing is a fundamental method for understanding the mechanical properties of materials. In this study, a low-cost tensile test setup has been developed. The design aims to provide a practical and economical solution for educational institutions and small-scale research projects. The developed system is built from locally available components and is based on simple mechanical principles. Using force sensors and linear motion mechanisms, the tensile strength and elongation properties of the specimens were successfully measured. The experimental results showed that the system works with high precision and successfully measured important properties of the tested materials such as tensile strength. Compared to commercial devices, this setup offers a significant cost advantage while achieving acceptable accuracy in terms of performance. As a result, this setup, which stands out as a low-cost and practical alternative, is considered to be especially suitable for use in educational laboratories and small-scale projects.

Kaynakça

  • [1] J. Zhong, M. Yang, X. He, K. Guan, B. Yu, and Z. He, “Improved approaches for small punch test to estimate the yield and ultimate tensile strength of metallic materials,” Journal of Nuclear Materials, vol. 604, p. 155490, Jan. 2025, doi: 10.1016/j.jnucmat.2024.155490.
  • [2] Z. Tao et al., “Effects of specimen thickness and fiber length on tensile and cracking behavior of UHPFRC: Uniaxial tensile test and micromechanical modeling,” Cem Concr Compos, vol. 155, p. 105828, Jan. 2025, doi: 10.1016/j.cemconcomp.2024.105828.
  • [3] M. Sarkar and A. Basu, “Evaluation of ring test with reference to deformation rate and specimen geometry in assessing the tensile behaviors of granite,” International Journal of Rock Mechanics and Mining Sciences, vol. 185, p. 105973, Jan. 2025, doi: 10.1016/j.ijrmms.2024.105973.
  • [4] Y. Wu et al., “A universal direct tensile testing method for measuring the tensile strength of rocks,” Int J Min Sci Technol, Nov. 2024, doi: 10.1016/j.ijmst.2024.09.009.
  • [5] C. Bambhaniya, J. T. Chavda, and J. B. Patel, “Observations on tensile testing of intact and slitted geotextiles through image analysis,” Geosynth Int, vol. 31, no. 5, pp. 773–784, Oct. 2024, doi: 10.1680/jgein.23.00113.
  • [6] S. Guo, Y. Ding, X. Zhang, P. Xu, J. Bao, and C. Zou, “Tensile properties of steel fiber reinforced recycled concrete under bending and uniaxial tensile tests,” Journal of Building Engineering, vol. 96, p. 110467, Nov. 2024, doi: 10.1016/j.jobe.2024.110467.
  • [7] Y. Wang, P. Qiao, J. Sun, A. Chen, D. Yuan, and Y. Wang, “Influence of surface treatments and test methods on tensile strength of UHPC-NC interface bond,” Constr Build Mater, vol. 456, p. 139051, Dec. 2024, doi: 10.1016/j.conbuildmat.2024.139051.
  • [8] Ê. H. Pires, J. V. Barreto Netto, and M. L. Ribeiro, “Raw dataset of tensile tests in a 3D-printed nylon reinforced with oriented short carbon fibers,” Data Brief, vol. 57, p. 111149, Dec. 2024, doi: 10.1016/j.dib.2024.111149.
  • [9] Y. Shi, H. Xue, F. Tang, F. Si, and Y. Hu, “Effect of alloying element segregation on theoretical strength and structural low-energy transition of Ni grain boundaries: A first-principles computational tensile test study,” Mater Today Commun, vol. 41, p. 110739, Dec. 2024, doi: 10.1016/j.mtcomm.2024.110739.
  • [10] Y.-C. Lai, M.-H. Lee, and Y.-S. Tai, “Evaluating the impact of specimen and punch sizes on the tensile strength of UHPC through double punch testing,” Constr Build Mater, vol. 449, p. 138060, Oct. 2024, doi: 10.1016/j.conbuildmat.2024.138060.
  • [11] S. I. A. Jalali, M. S. Patullo, N. Philips, and K. J. Hemker, “Capturing the ultrahigh temperature response of materials with sub-scale tensile testing,” Materials Today, vol. 80, pp. 87–100, Nov. 2024, doi: 10.1016/j.mattod.2024.08.007.
  • [12] L. Meng et al., “Deformation behavior and fracture mechanisms of 430 ferritic stainless steel after dual-phase zone annealing via quasi in-situ tensile testing,” Materials Science and Engineering: A, vol. 920, p. 147561, Jan. 2025, doi: 10.1016/j.msea.2024.147561.
  • [13] S. Lam et al., “Length scale effects of micro- and meso scale tensile tests of unirradiated and irradiated Zircaloy-4 cladding,” Journal of Nuclear Materials, vol. 604, p. 155469, Jan. 2025, doi: 10.1016/j.jnucmat.2024.155469.
  • [14] Y. Hattori et al., “Biomechanical tensile test for capsule repair comparing suturing methods including interrupted, continuous, and barbed sutures,” Clinical Biomechanics, vol. 120, p. 106371, Dec. 2024, doi: 10.1016/j.clinbiomech.2024.106371.
  • [15] A. Berriot, M. Evin, K. Kerkouche, E. Laroche, E. Gerard, and E. Wagnac, “Exploring the effect of displacement rate on the mechanical properties of denticulate ligaments through uniaxial tensile testing,” J Mech Behav Biomed Mater, vol. 162, p. 106824, Feb. 2025, doi: 10.1016/j.jmbbm.2024.106824.
  • [16] H. Yamamoto et al., “Phonon transports in single-walled carbon nanotube films with different structures determined by tensile tests and thermal conductivity measurements,” Carbon Trends, p. 100435, Dec. 2024, doi: 10.1016/j.cartre.2024.100435.
  • [17] S. Liu, B. Liu, X. Li, H. Zuo, W. Bao, and C. Gu, “Design and performance of a triaxial load cell for conical picks,” Measurement, vol. 238, p. 115362, Oct. 2024, doi: 10.1016/j.measurement.2024.115362.
  • [18] H. Jahn, T. Fröhlich, and L. Zentner, “Development of an analytical model and method for analyzing deformation in planar load cells,” Mech Mach Theory, vol. 203, p. 105812, Nov. 2024, doi: 10.1016/j.mechmachtheory.2024.105812.
  • [19] İ. Böğrekci Et Al. , "Development of Load Cell and Real-Time Force Measurement System," Welmo 2017 , İzmir, Turkey, pp.13-18. 2017.
  • [20] Pulse Electronic (2024). PS Serisi Yük Hücresi (Load Cell). Çevrimiçi https://www.puls.com.tr/urun/load-cell-yuk-hucresi/ps-serisi-yuk-hucresi-load-cell/21

UCUZ ÇEKME TESTİ MAKİNESİ

Yıl 2025, Cilt: 8 Sayı: 1, 33 - 43, 30.06.2025
https://doi.org/10.38061/idunas.1595305

Öz

Çekme testi, malzemelerin mekanik özelliklerini anlamak için temel bir yöntemdir. Bu çalışmada, düşük maliyetli bir çekme testi düzeneği geliştirilmiştir. Tasarım, eğitim kurumları ve küçük ölçekli araştırma projeleri için pratik ve ekonomik bir çözüm sağlamayı amaçlamaktadır. Geliştirilen sistem, yerel olarak temin edilebilen bileşenlerden üretilmiştir ve basit mekanik prensiplere dayanmaktadır. Kuvvet sensörleri ve doğrusal hareket mekanizmaları kullanılarak, numunelerin çekme mukavemeti ve uzama özellikleri başarıyla ölçülmüştür. Deneysel sonuçlar, sistemin yüksek hassasiyetle çalıştığını ve test edilen malzemelerin çekme mukavemeti gibi önemli özelliklerini başarıyla ölçtüğünü göstermiştir. Ticari cihazlarla karşılaştırıldığında bu düzenek, performans açısından kabul edilebilir bir doğruluk elde ederken önemli bir maliyet avantajı sunmaktadır. Sonuç olarak, düşük maliyetli ve pratik bir alternatif olarak öne çıkan bu düzeneğin özellikle eğitim laboratuvarlarında ve küçük ölçekli projelerde kullanım için uygun olduğu düşünülmektedir.

Kaynakça

  • [1] J. Zhong, M. Yang, X. He, K. Guan, B. Yu, and Z. He, “Improved approaches for small punch test to estimate the yield and ultimate tensile strength of metallic materials,” Journal of Nuclear Materials, vol. 604, p. 155490, Jan. 2025, doi: 10.1016/j.jnucmat.2024.155490.
  • [2] Z. Tao et al., “Effects of specimen thickness and fiber length on tensile and cracking behavior of UHPFRC: Uniaxial tensile test and micromechanical modeling,” Cem Concr Compos, vol. 155, p. 105828, Jan. 2025, doi: 10.1016/j.cemconcomp.2024.105828.
  • [3] M. Sarkar and A. Basu, “Evaluation of ring test with reference to deformation rate and specimen geometry in assessing the tensile behaviors of granite,” International Journal of Rock Mechanics and Mining Sciences, vol. 185, p. 105973, Jan. 2025, doi: 10.1016/j.ijrmms.2024.105973.
  • [4] Y. Wu et al., “A universal direct tensile testing method for measuring the tensile strength of rocks,” Int J Min Sci Technol, Nov. 2024, doi: 10.1016/j.ijmst.2024.09.009.
  • [5] C. Bambhaniya, J. T. Chavda, and J. B. Patel, “Observations on tensile testing of intact and slitted geotextiles through image analysis,” Geosynth Int, vol. 31, no. 5, pp. 773–784, Oct. 2024, doi: 10.1680/jgein.23.00113.
  • [6] S. Guo, Y. Ding, X. Zhang, P. Xu, J. Bao, and C. Zou, “Tensile properties of steel fiber reinforced recycled concrete under bending and uniaxial tensile tests,” Journal of Building Engineering, vol. 96, p. 110467, Nov. 2024, doi: 10.1016/j.jobe.2024.110467.
  • [7] Y. Wang, P. Qiao, J. Sun, A. Chen, D. Yuan, and Y. Wang, “Influence of surface treatments and test methods on tensile strength of UHPC-NC interface bond,” Constr Build Mater, vol. 456, p. 139051, Dec. 2024, doi: 10.1016/j.conbuildmat.2024.139051.
  • [8] Ê. H. Pires, J. V. Barreto Netto, and M. L. Ribeiro, “Raw dataset of tensile tests in a 3D-printed nylon reinforced with oriented short carbon fibers,” Data Brief, vol. 57, p. 111149, Dec. 2024, doi: 10.1016/j.dib.2024.111149.
  • [9] Y. Shi, H. Xue, F. Tang, F. Si, and Y. Hu, “Effect of alloying element segregation on theoretical strength and structural low-energy transition of Ni grain boundaries: A first-principles computational tensile test study,” Mater Today Commun, vol. 41, p. 110739, Dec. 2024, doi: 10.1016/j.mtcomm.2024.110739.
  • [10] Y.-C. Lai, M.-H. Lee, and Y.-S. Tai, “Evaluating the impact of specimen and punch sizes on the tensile strength of UHPC through double punch testing,” Constr Build Mater, vol. 449, p. 138060, Oct. 2024, doi: 10.1016/j.conbuildmat.2024.138060.
  • [11] S. I. A. Jalali, M. S. Patullo, N. Philips, and K. J. Hemker, “Capturing the ultrahigh temperature response of materials with sub-scale tensile testing,” Materials Today, vol. 80, pp. 87–100, Nov. 2024, doi: 10.1016/j.mattod.2024.08.007.
  • [12] L. Meng et al., “Deformation behavior and fracture mechanisms of 430 ferritic stainless steel after dual-phase zone annealing via quasi in-situ tensile testing,” Materials Science and Engineering: A, vol. 920, p. 147561, Jan. 2025, doi: 10.1016/j.msea.2024.147561.
  • [13] S. Lam et al., “Length scale effects of micro- and meso scale tensile tests of unirradiated and irradiated Zircaloy-4 cladding,” Journal of Nuclear Materials, vol. 604, p. 155469, Jan. 2025, doi: 10.1016/j.jnucmat.2024.155469.
  • [14] Y. Hattori et al., “Biomechanical tensile test for capsule repair comparing suturing methods including interrupted, continuous, and barbed sutures,” Clinical Biomechanics, vol. 120, p. 106371, Dec. 2024, doi: 10.1016/j.clinbiomech.2024.106371.
  • [15] A. Berriot, M. Evin, K. Kerkouche, E. Laroche, E. Gerard, and E. Wagnac, “Exploring the effect of displacement rate on the mechanical properties of denticulate ligaments through uniaxial tensile testing,” J Mech Behav Biomed Mater, vol. 162, p. 106824, Feb. 2025, doi: 10.1016/j.jmbbm.2024.106824.
  • [16] H. Yamamoto et al., “Phonon transports in single-walled carbon nanotube films with different structures determined by tensile tests and thermal conductivity measurements,” Carbon Trends, p. 100435, Dec. 2024, doi: 10.1016/j.cartre.2024.100435.
  • [17] S. Liu, B. Liu, X. Li, H. Zuo, W. Bao, and C. Gu, “Design and performance of a triaxial load cell for conical picks,” Measurement, vol. 238, p. 115362, Oct. 2024, doi: 10.1016/j.measurement.2024.115362.
  • [18] H. Jahn, T. Fröhlich, and L. Zentner, “Development of an analytical model and method for analyzing deformation in planar load cells,” Mech Mach Theory, vol. 203, p. 105812, Nov. 2024, doi: 10.1016/j.mechmachtheory.2024.105812.
  • [19] İ. Böğrekci Et Al. , "Development of Load Cell and Real-Time Force Measurement System," Welmo 2017 , İzmir, Turkey, pp.13-18. 2017.
  • [20] Pulse Electronic (2024). PS Serisi Yük Hücresi (Load Cell). Çevrimiçi https://www.puls.com.tr/urun/load-cell-yuk-hucresi/ps-serisi-yuk-hucresi-load-cell/21
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Tasarımı ve Makine Elemanları
Bölüm Makaleler
Yazarlar

Fatih Akkoyun 0000-0002-1432-8926

Pevril Demir Arı 0000-0002-1032-6528

Mustafa Burak Günay 0000-0002-3720-7414

Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 2 Aralık 2024
Kabul Tarihi 3 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 1

Kaynak Göster

APA Akkoyun, F., Arı, P. D., & Günay, M. B. (2025). AN INEXPENSIVE TENSILE TEST MACHINE. Natural and Applied Sciences Journal, 8(1), 33-43. https://doi.org/10.38061/idunas.1595305