Araştırma Makalesi
BibTex RIS Kaynak Göster

Esnek Kümelerin Kısıtlanmış ve Genişletilmiş Kesişim İşlemleri Üzerine Kapsamlı Bir Çalışma

Yıl 2025, Cilt: 8 Sayı: 1, 44 - 111, 30.06.2025
https://doi.org/10.38061/idunas.1613387

Öz

Esnek küme teorisi, Molodtsov tarafından ortaya atıldığından beri belirsizlikle ilgili problemleri ele almak ve belirsizliği modellemek için devrim niteliğinde bir yaklaşım olarak öne çıkmıştır. Teorinin temel kavramı olan esnek küme işlemleri kavramı, teorideki teorik ve pratik ilerlemeler için temel teşkil etmiş, bu nedenle esnek küme işlemlerinin cebirsel özelliklerini türetmek ve esnek küme işlemleriyle ilişkili esnek kümelerin cebirsel yapısını incelemek araştırmacıların ilgisini sürekli çekmiştir. Esnek küme teorisinde, şimdiye kadar aralarında bazı farklılıklar bulunan ve bazıları esasen kullanışlı ve işlevsel olmadıkları için artık kullanımı tercih edilmeyen birçok esnek kesişim işlemi tanımlanmıştır. Kısıtlı kesişim tanımı literatürde yaygın olarak kabul görse ve çalışmalarda kullanılsa da, esnek kümelerin parametre kümelerinin ayrık olabileceği bazı durumlar göz ardı edildiğinden, teoremlerdeki tüm durumlar ilgili ispatlarda dikkate alınmadığından, bu işlemin kullanıldığı veya özelliklerinin araştırıldığı çalışmalarda yanlışlık veya eksikliğe neden olmaktadır. Bu bağlamda, mevcut literatürde, doğru tanımlanmış kısıtlı kesişim işlemi ile genişletilmiş kesişim işleminin doğru özellikleri ve dağılımları ve bu esnek küme işlemleriyle ilişkili doğru cebirsel yapılar hakkında kapsamlı bir çalışmanın kritik bir eksikliği vardır. Bu çalışmada, öncelikle kısıtlı kesişim tanımının sunumundaki eksiklikleri düzelterek ve revize ederek bu önemli boşluğu doldurmayı amaçlıyoruz. Ayrıca, bu işlemlerle ilgili birçok makalede, birkaç teorem ispatları olmadan sunulmuş veya ispatlarda bazı hatalı kısımlar bulunmaktadır. Bu çalışmada, fonksiyon eşitliğine dayalı tüm ispatlar düzenli olarak sağlanmış ve ayrıca, esnek alt küme kavramı ile kısıtlı ve genişletilmiş kesişim işlemleri arasındaki ilişkiler ilk kez ayrıntılı ispatlarıyla sunulmuştur. Dahası, bu işlemlerin klasik küme teorisindeki kesişim işleminin analojisi ve karşılığı olarak birçok yeni özelliği elde edilmiştir. Ayrıca, işlemlerin tüm özellikleri ve diğer esnek küme işlemleri üzerindeki dağılımları, işlemlerin hem evrensel küme üzerindeki esnek kümeler kümesinde hem de sabit parametre kümesinde ayrı ayrı ve diğer esnek küme işlemleriyle birlikte oluşturdukları doğru cebirsel yapıları belirlemek için kapsamlı bir şekilde araştırılmıştır. Kısıtlanmış/genişletilmiş kesişim işlemlerinin, diğer esnek küme işlemleriyle birleştirildiğinde, monoid, sınırlı yarı kafes, yarı halka, hemiring, sınırlı dağıtımlı kafes, Bool cebiri, De Morgan Cebri, Kleene Cebri, Stone cebiri ve MV-cebri gibi birkaç önemli cebirsel yapı oluşturduğu ayrıntılı açıklamalarla gösterilmiştir. Bu bağlamda, bu genel çalışma, kısıtlı kesişim ve genişletilmiş kesişim konusunda literatürde bugüne kadar yapılmış en kapsamlı analizi temsil etmektedir; çünkü bu konu üzerinde yapılmış tüm önemli araştırmaları, düzeltilmiş teoremleri ve bunların ispatlarını kapsamakta, böylece literatürdeki önemli boşluğu doldurarak teoriyi ilerletmekte, bu popüler teoriye yeni başlayanlar için bir rehber görevi görmekte ve ayrıca esnek kümeler üzerine yapılacak gelecekteki çalışmalara ışık tutmaktadır.

Proje Numarası

YOK

Kaynakça

  • 1. Abbas, M., Ali, B. and Romaguera, S. 2014. On generalized soft equality and soft lattice structure. Filomat, Vol. 28, No. 6, pp. 1191-1203.
  • 2. Abbas, M., Ali, M. I. and Romaguera, S. 2017. Generalized operations in soft set theory via relaxed conditions on parameters. Filomat, Vol. 31, No. 19, pp. 5955-5964.
  • 3. Acar, U., Koyuncu, F. and Tanay, B. 2010. Soft sets and soft rings. Computers and Mathematics with Applications, Vol. 59, No. 11, pp. 3458-3463.
  • 4. Akbulut, E. 2024. New type of extended operations of soft sets: Complementary extended difference and lambda operations. Unpublished master thesis, Amasya University the Graduate School of Natural and Applied Sciences, Amasya.
  • 5. Aktas, H. and Çağman, N. 2007. Soft sets and soft groups. Information Science, Vol. 177, No. 13, pp. 2726-2735.
  • 6. Alcantud, J.C.R. and Khameneh, A.Z., Santos-García, G. and Akram, M. 2024. A systematic literature review of soft set theory. Neural Computing and Applications, Vol. 36, pp. 8951–8975.
  • 7. Ali, M. I., Feng, F., Liu, X., Min, W. K. and Shabir, M. 2009. On some new operations in soft set theory. Computers and Mathematics with Applications, Vol. 57, No. 9, pp. 1547-1553.
  • 8. Ali, M. I., Mahmood, M., Rehman, M.U. and Aslam, M. F. 2015. On lattice ordered soft sets, Applied Soft Computing, Vol36, pp. 499-505.
  • 9. Ali, B., Saleem, N., Sundus, N., Khaleeq, S., Saeed, M. and George, R. 2022. A contribution to the theory of soft sets via generalized relaxed operations. Mathematics, Vol. 10, No. 15, pp. 26-36.
  • 10. Ali, M. I., Shabir, M. and Naz, M. 2011. Algebraic structures of soft sets associated with new operations. Computers and Mathematics with Applications, Vol. 61, No. 9, pp. 2647-2654.
  • 11. Al-Shami, T. M. 2019. Investigation and corrigendum to some results related to g-soft equality and gf -soft equality relations. Filomat, Vol. 33, No. 11, pp. 3375-3383.
  • 12. Alshami, T. and El-Shafei, M. 2020. T-soft equality relation. Turkish Journal of Mathematics, Vol. 44, No. 4, pp. 1427-1441.
  • 13. Atagün, A.O., Kamacı, H., Taştekin, İ. and Sezgin, A. 2019. P-properties in near-rings. Journal of Mathematical and Fundamental Sciences, Vol. 51, No. 2, pp. 152-167.
  • 14. Atagün, A. O. and Sezgin, A. 2018. A new view to near-ring theory: Soft near-rings, South East Asian Journal of Mathematics & Mathematical Sciences, Vol. 14, No. 3, pp. 1-14.
  • 15. Atagün, A. O. and Sezgin, A. 2015. Soft subnear-rings, soft ideals and soft N-subgroups of near-rings, Mathematical Sciences Letters, Vol. 7, No. 1, pp. 37-42.
  • 16. Atagün, A.O. and Sezgin, A. 2017. Int-soft substructures of groups and semirings with applications, Applied Mathematics & Information Sciences, Vol. 11, No. 1, pp. 105-113.
  • 17. Atagün, A. O. and Sezgin, A. 2022. More on prime, maximal and principal soft ideals of soft rings. New mathematics and natural computation, Vol. 18, No. 01, pp. 195-207.
  • 18. Aybek, F. 2024. New restricted and extended soft set operations. Unpublished Master Thesis, Amasya University the Graduate School of Natural and Applied Sciences, Amasya.
  • 19. Birkhoff, G. 1967. Lattice theory. American Mathematical Society, Providence, Rhode Island.
  • 20. Clifford, A. H. 1954. Bands of semigroups, Proceedings of the American Mathematical Society, Vol. 5, No. 3, pp. 499–504.
  • 21. Çağman, N. 2021. Conditional complements of sets and their application to group theory. Journal of New Results in Science, Vol. 10, No: 3, pp. 67-74.
  • 22. Çağman, N. and Enginoğlu, S. 2010. Soft set theory and uni-int decision making. European Journal of Operational Research, Vol. 207, No. 2, pp. 848-855.
  • 23. Chang, C.C. 1958. A new proof of the completeness of the Łukasiewicz axioms, Transactions of the American Mathematical Society, Vol. 93, No. 1, pp. 74-80.
  • 24. Demirci, A. M. 2024. New type of extended operations of soft sets: Complementary extended union, plus and theta 0perations. Unpublished Master Thesis, Amasya University the Graduate School of Natural and Applied Sciences, Amasya.
  • 25. Eren, Ö. F. and Çalışıcı, H. 2019. On some operations of soft sets. The Fourth International Conference on Computational Mathematics and Engineering Sciences.
  • 26. Feng, F. and Li, Y. 2013. Soft subsets and soft product operations. Information Sciences, Vol. 232, No. 20, pp. 44-57.
  • 27. Feng, F., Jun, Y. B. and Zhao, X. 2008. Soft semirings. Computers and Mathematics with Applications, Vol. 56, No. 10, pp. 2621-2628.
  • 28. Fu, L. 2011. Notes on soft set operations, ARPN Journal of Systems and Software, Vol. 1, pp. 205-208.
  • 29. Ge, X. and Yang, S.2011. Investigations on some operations of soft sets, World Academy of Science, Engineering and Technology, Vol. 75, pp. 1113-1116.
  • 30. Goodearl, K. R. 1979) Von Neumann Regular Rings. Pitman, Londra.
  • 31. Gulistan, M., Shahzad, M. 2014 On soft KU-algebras, Journal of Algebra, Number Theory: Advances and Applications, Vol. 11, No, 1, pp. 1-20.
  • 32. Gulistan, M., Feng, F., Khan, M., and Sezgin, A. 2018. Characterizations of right weakly regular semigroups in terms of generalized cubic soft sets. Mathematics, No: 6, 293
  • 33. Husain, S. and Shivani, Km. 2018. A study of properties of soft set and its Applications, International Research Journal of Engineering and Technology, Vol. 5, No. 1, pp. 363-3 72.
  • 34. Iftikhar, M., Mahmood, T. 2018. Some results on lattice ordered double framed soft semirings. International Journal of Algebra and Statistics, Vol. 7, pp. 123-140.
  • 35. Irfan Siddique, M., Faisal Iqbal, M., Mahmood, T. and Khan, Q. 2021. On lattice ordered double framed soft rings, Punjab University Journal of Mathematics, Vol. 53, pp. 295-306.
  • 36. Jan, N., Irfan Siddique, M. and Mahmood, T. 2020. On double framed soft rings. Technical Journal, Vol. 25, No. 2, pp. 126-131.
  • 37. Jana, C., Pal, M., Karaaslan, F. and Sezgin, A. 2019. (α, β)-soft intersectional rings and ideals with their applications. New Mathematics and Natural Computation, Vol. 15, No. 2, pp. 333–350.
  • 38. Jun, Y. B. 2008. Soft BCK/BCI-algebras. Computers and Mathematics with Applications, Vol. 56, No. 5, pp. 1408-1413.
  • 39. Jun, Y. B. and Park, C. H. 2008. Applications of soft sets in ideal theory of BCK/BCI-algebras. Information Sciences, Vol. 178, No. 11, pp. 2466-2475.
  • 40. Jun, Y. B. and Yang, X. 2011. A note on the paper combination of interval-valued fuzzy set and soft set. Computers and Mathematics with Applications, Vol. 61, No. 5, pp. 1468-1470.
  • 41. Jun, Y. B., Lee, K. J. and Khan, A. 2010. Soft ordered semigroups. Mathematical Logic Quarterly, Vol. 56, No. 1, pp. 42-50.
  • 42. Jun, Y. B., Lee, K. J. and Zhan, J. 2009. Soft p-ideals of soft BCI-algebras. Computers and Mathematics with Applications, Vol. 58, No. 10, pp. 2060-2068.
  • 43. Jun, Y. B., Song, S. Z. and So, K. S. 2011. Soft set theory applied to p-ideals of BCI-algebras related to fuzzy points. Neural Computing and Applications, Vol. 20, No. 8, pp.1313-1320.
  • 44. Karaaslan, F. 2019. Some properties of AG*-groupoids and AG-bands under SI-product Operation. Journal of Intelligent and Fuzzy Systems, Vol. 36, No 1, pp. 231-239.
  • 45. Karaaslan, F., Ullah, A. and Ahmad, I. 2021. Normal bipolar soft subgroups. Fuzzy Information and Engineering, Vol. 13, No. 1, pp. 79-98.
  • 46. Karvellas, P. H. 1974. Inversive semirings. Journal of the Australian Mathematical Society, Vol. 18, No. 3, pp. 277-288.
  • 47. Kazanci, O., Yilmaz, S. and Yamak, S. 2010. Soft sets and soft BCH-algebras. Hacettepe Journal of Mathematics and Statistics, Vol. 39, No. 2, pp. 205-217.
  • 48. Khan, M., Ilyas, F., Gulistan, M. and Anis, S. 2015. A study of soft AG-groupoids, Annals of Fuzzy Mathematics and Informatics, Vol. 9, No. 4, pp. 621–638.
  • 49. Khan, A., Izhar, I., & Sezgin, A. 2017. Characterizations of Abel Grassmann's Groupoids by the properties of their double-framed soft ideals, International Journal of Analysis and Applications, Vol: 15, No. 1, 62-74.
  • 50. Liu, X., Feng, F. and Jun, Y. B. 2012. A note on generalized soft equal relations. Computers and Mathematics with Applications, Vol. 64, No 4, pp. 572-578.
  • 51. Maji, P. K., Biswas, R. and Roy, A. R. 2003. Soft set theory. Computers and Mathematics with Application, Vol. 45, No. 1, pp. 555-562.
  • 52. Mahmood, T. 2020. A novel approach toward bipolar soft sets and their applications, Journal of Mathematics, Vol. 2020, Article ID 4690808.
  • 53. Mahmood, T., Waqas, A., and Rana, M. A.2015. Soft intersectional ideals in ternary semiring. Science International, Vol. 27, No 5, pp. 3929-3934.
  • 54. Mahmood, T., Rehman, Z. U., and Sezgin, A. 2018. Lattice ordered soft near rings. Korean Journal of Mathematics, Vol. 26, No 3, pp. 503-517.
  • 55. Manikantan, T., Ramasany, P., and Sezgin, A. 2023. Soft quasi-ideals of soft near-rings, Sigma Journal of Engineering and Natural Science, Vol. 41, No: 3, 565-574.
  • 56. Memiş, S.2022. Another view on picture fuzzy soft sets and their product operations with soft decision-making. Journal of New Theory, Vol. 38, pp. 1-13.
  • 57. Molodtsov, D. 1999. Soft set theory. Computers and Mathematics with Applications, Vol. 37, No. 1, pp. 19-31.
  • 58. Muştuoğlu, E., Sezgin, A., and Türk, Z.K.2016. Some characterizations on soft uni-groups and normal soft uni-groups. International Journal of Computer Applications, 155 (10), 1-8.
  • 59. Naeem, K., and Memis, S. 2023. Picture fuzzy soft σ-algebra and picture fuzzy soft measure and their applications to multi-criteria decision-making. Granular Computing, Vol. 8, No. 2, pp. 397–410.
  • 60. Neog, I.J and Sut, D.K. 2011. A new approach to the theory of softset, International Journal of Computer Applications, Vol. 32, No 2, pp. 1-6.
  • 61. Onyeozili, I. A. and Gwary T. M. 2014. A study of the fundamentals of soft set theory, International Journal of Scientific & Technology Research, Vol. 3, No. 4, pp. 132-143.
  • 62. Özlü, Ş. and Sezgin, A. 2020. Soft covered ideals in semigroups. Acta Universitatis Sapientiae Mathematica, Vol. 12, No. 2, pp. 317-346.
  • 63. Pant, P., Dagtoros, K., Kholil, M.I. & Vivas, A. 2024. Matrices: Peculiar determinant property, Optimum Science Journal, Vol. 1, pp. 1–7.
  • 64. Park, C. H., Jun, Y. B. and Ozturk, M. A. 2008. Soft WS-algebras. Communications of the Korean Mathematical Society, Vol. 23, No. 3, pp. 313-324.
  • 65. Pei, D. and Miao, D. 2005. From soft sets to information systems, In: Proceedings of Granular Computing (Eds: X. Hu, Q. Liu, A. Skowron, T. Y. Lin, R. R. Yager, B. Zhang) IEEE, Vol. 2, pp. 617-621.
  • 66. Petrich, M. 1973. Introduction to semigroups. Charles E Merrill Publishing Company, Ohio, 198.
  • 67. Reutenauer, C. and Straubing, H. 1984. Inversion of matrices over a commutative semiring. Journal of Algebra, Vol. 88, No. 2, pp. 350-360.
  • 68. Riaz, M., Hashmi, M. R., Karaaslan, F., Sezgin, A., Shamiri, M. M. A. A. and Khalaf, M. M. 2023. Emerging trends in social networking systems and generation gap with neutrosophic crisp soft mapping. CMES-computer modeling in engineering and sciences, Vol. 136, No. 2, pp. 1759-1783.
  • 69. Qin, K. and Hong, Z. 2010. On soft equality. Journal of Computational and Applied Mathematics, Vol. 234, No. 5, pp. 1347-1355.
  • 70. Sarıalioğlu, M. 2024. New type of extended operations of soft sets: Complementary extended intersection, gamma and star operations. Unpublished Master Thesis, Amasya University the Graduate School of Natural and Applied Sciences, Amasya.
  • 71. Sen, J. 2014.On algebraic structure of soft sets. Annals of Fuzzy Mathematics and Informatics, Vol. 7, No. 6, pp. 1013-1020.
  • 72. Sezer, A. S. and Atagün, A. O. 2016. A new kind of vector space: soft vector space, Southeast Asian Bulletin of Mathematics, Vol. 40, No. 5, pp. 753-770.
  • 73. Sezer, A., Atagün, A. O. and Çağman, N. 2017. N-group SI-action and its applications to N-group theory, Fasciculi Mathematici, No. 52, pp. 139-153.
  • 74. Sezer, A., Atagün, A. O. and Çağman, N. 2013. A new view to N-group theory: soft N-groups, Fasciculi Mathematici, No. 51, pp. 123-140.
  • 75. Sezer, A. S., Çağman, N., Atagün, A. O., Ali, M. I. and Türkmen, E. 2015. Soft intersection semigroups, ideals and bi-Ideals; A New application on semigroup theory I. Filomat, Vol. 29, No. 5, pp. 917-946.
  • 76. Sezer, A. S., Çağman, N. and Atagün, A. O. 2014. Soft intersection interior ideals, quasi-ideals and generalized bi-ideals; A new approach to semigroup theory II. J. Multiple-Valued Logic and Soft Computing, Vol. 23, No. 1-2, pp. 161-207.
  • 77. Sezgin, A. A new approach to semigroup theory I: Soft union semigroups, ideals and bi-ideals. 2016. Algebra Letters, Vol. 2016, No. 3, pp. 1-46.
  • 78. Sezgin, A. and İlgin, A. 2024. Soft intersection almost subsemigroups of semigroups. International Journal of Mathematics and Physics, Vol. 15, No. 1, pp. 13-20.
  • 79. Sezgin, A. and Atagün, A. O. 2011. On operations of soft sets. Computers and Mathematics with Applications, Vol. 61, No. 5, pp. 1457-1467.
  • 80. Sezgin, A., Atagün, A. O and Çağman N. 2025. A complete study on and-product of soft sets. Sigma Journal of Engineering and Natural Sciences, Vol. 43, No. 1, pp. 1−14.
  • 81. Sezgin, A., Atagün, A. O., Çağman, N. and Demir, H. On near-rings with soft union ideals and applications. 2022. New Mathematics and Natural Computation, Vol. 18, No. 2, pp. 495-511.
  • 82. Sezgin, A., Aybek, F. and Atagün, A. O. 2023a. A new soft set operation: Complementary soft binary piecewise intersection operation. Black Sea Journal of Engineering and Science, Vol. 6, No. 4, pp. 330-346.
  • 83. Sezgin, A., Aybek, F. and Güngör, N. B. 2023b. A new soft set operation: Complementary soft binary piecewise union operation. Acta Informatica Malaysia, Vol. 7, No 1, pp. 38-53.
  • 84. Sezgin, A. and Çağman, N. 2024. A new soft set operation: Complementary soft binary piecewise difference operation. Osmaniye Korkut Ata University Journal of the Institute of Science and Technology, Vol.7, No. 1, pp. 1-37.
  • 85. Sezgin, A. and Çağman, N. 2025. An Extensive Study on Restricted and Extended Symmetric Difference Operations of Soft Sets, Utilitas Mathematica. in press.
  • 86. Sezgin, A., Çağman, N. and Atagün, A. O. 2017. A completely new view to soft intersection rings via soft uni-int product, Applied Soft Computing, Vol. 54, pp. 366-392.
  • 87. Sezgin, A., Çağman, N., Atagün, A. O. and Aybek, F. 2023c. Complemental binary operations of sets and their application to group theory. Matrix Science Mathematic, Vol. 7, No. 2, pp. 99-106.
  • 88. Sezgin, A. and Çalışıcı, H. 2024.A comprehensıve study on soft binary piecewise difference operation, Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B- Teorik Bilimler, Vol. 12, No. 1, pp. 1-23.
  • 89. Sezgin, A. and Dagtoros, K. 2023. Complementary soft binary piecewise symmetric difference operation: A novel soft set operation. Scientific Journal of Mehmet Akif Ersoy University, Vol. 6, No. 2, pp. 31-45.
  • 90. Sezgin, A. and Demirci, A. M. 2023. A new soft set operation: Complementary soft binary piecewise star operation. Ikonion Journal of Mathematics, Vol. 5, No. 2, pp. 24-52.
  • 91. Sezgin, A. and Onur, B. 2024. Soft intersection almost bi-ideals of semigroups. Systemic Analytics, Vol. 2, No. 1, pp. 95-105.
  • 92. Sezgin, A., Onur, B. and İlgin, A. 2024. Soft intersection almost tri-ideals of semigroups. SciNexuses, No. 1, pp. 126-138.
  • 93. Sezgin, A. and Orbay, M. 2022. Analysis of semigroups with soft intersection ideals, Acta Universitatis Sapientiae, Mathematica, Vol. 14, No: 2, pp. 166-210.
  • 94. Sezgin, A. and Sarıalioğlu, M. 2024a. A new soft set operation: Complementary soft binary piecewise theta operation. Journal of Kadirli Faculty of Applied Sciences, Vol. 4, No. 2, pp. 325-357.
  • 95. Sezgin, A. and Sarıalioğlu, M. 2024b. Complementary extended gamma operation: A new soft set operation, Natural and Applied Sciences Journal, Vol. 7, No. 1, pp.15-44.
  • 96. Sezgin, A., Shahzad, A. and Mehmood, A. 2019. A new operation on soft sets: Extended difference of soft sets. Journal of New Theory, Vol. 27, pp. 33-42.
  • 97. Sezgin, A. and Şenyiğit, E. 2025. A new product for soft sets with its decision-making: soft star-product. Big Data and Computing Visions, No. 5, Vol. 1, pp. 52-73.
  • 98. Sezgin, A. and Yavuz, E. 2023a. A new soft set operation: Soft binary piecewise symmetric difference operation. Necmettin Erbakan University Journal of Science and Engineering, Vol. 5, No. 2, pp. 150-168.
  • 99. Sezgin, A. and Yavuz, E. 2023b. A new soft set operation: Complementary soft binary piecewise lambda operation. Sinop University Journal of Natural Sciences, Vol. 8, No. 2, pp. 101-133.
  • 100. Sezgin, A. and Yavuz, E. 2024. Soft binary piecewise plus operation: A new type of operation for soft sets, Uncertainty Discourse and Applications, Vol. 1, No. 1, pp. 79-100.
  • 101. Singh, D. and Onyeozili, I. A. 2012a. Notes on soft matrices operations. ARPN Journal of Science and Technology, Vol. 2, No. 9, pp. 861-869.
  • 102. Singh, D. and Onyeozili, I. A.2012b. On some new properties on soft set operations. International Journal of Computer Applications, Vol. 59, No. 4, pp. 39-44.
  • 103. Singh, D. and Onyeozili, I. A. 2012c. Some results on distributive and absorption properties on soft operations. IOSR Journal of Mathematics (IOSR-JM), Vol. 4, No. 2, pp. 18-30.
  • 104. Singh, D. and Onyeozili, I. A. 2012d. Some conceptual misunderstanding of the fundamentals of soft set theory. ARPN Journal of Systems and Software, Vol. 2, No. 9, pp. 251-254.
  • 105. Stojanovic, N. S. 2021. A new operation on soft sets: Extended symmetric difference of soft sets. Military Technical Courier, Vol. 69, No. 4, pp. 779-791.
  • 106. Sun, Q. M., Zhang, Z. L., and Liu, J. 2008. Soft sets and soft modules. In Rough Sets and Knowledge Technology: Third International Conference, RSKT 2008, Chengdu, China, May 17-19, 2008. Proceedings 3 (pp. 403-409). Springer Berlin Heidelberg.
  • 107. Tunçay, M. and Sezgin, A. 2016. Soft union ring and its applications to ring theory, International Journal of Computer Applications, Vol. 151, No. 9, 7-13.
  • 108. Ullah, A., Karaaslan, F. and Ahmad, I. 2018. Soft uni-abel-grassmann's groups. European Journal of Pure and Applied Mathematics, Vol. 11, No. 2, pp.517-536.
  • 109. Vandiver, H. S. 1934. Note on a simple type of algebra in which the cancellation law of addition does not hold. Bulletin of the American Mathematical Society, Vol. 40, No. 12, pp. 914-920.
  • 110. Yang, C. F. 2008. A note on: Soft set theory. Computers and Mathematics with Applications, Vol. 56, No. 7, pp. 1899-1900.
  • 111. Yavuz, E. 2024. Soft binary piecewise operations and their properties. Unpublished Master Thesis, Amasya University the Graduate School of Natural and Applied Sciences, Amasya.
  • 112. Zhan, J. and Jun, Y. B. 2010. Soft BL-algebras based on fuzzy sets. Computers and Mathematics with Applications, Vol. 59, No. 6, pp. 2037-2046.
  • 113. Zhu, P. and Wen, Q. 2013. Operations on soft sets revisited, Journal of Applied Mathematics, Vol. 2013, Article ID 105752, 7 pages.

A Comprehensive Study on Restricted and Extended Intersection Operations of Soft Sets

Yıl 2025, Cilt: 8 Sayı: 1, 44 - 111, 30.06.2025
https://doi.org/10.38061/idunas.1613387

Öz

Soft set theory has gained prominence as a revolutionary approach for handling uncertainty-related problems and modeling uncertainty since it was proposed by Molodtsov. The concept of soft set operations, which is the major notion for the theory, has served as the foundation for theoretical and practical advances in the theory, therefore deriving the algebraic properties of the soft set operations and studying the algebraic structure of soft sets associated with soft set operations have attracted the researchers’ interest continuously. In the theory of soft set, many soft intersection operations have been defined up to now among which there are some differences, and some of which are no longer preferred for use as they are essentially not useful and functional. Although the definition of restricted intersection is widely accepted in the literature and used in the studies, it is still incomplete with its current form suffering from certain cases where the parameter sets of the soft sets may be disjoint is ignored, thus all the circumstances in the theorems are not considered in the related proofs causing to the incorrectness or deficiency in the studies where this operation is used or its properties are investigated. In this regard, in the existing literature, there is a critical lack of comprehensive study on the correct defined restricted intersection operation together with extended intersection including their correct properties and distributions and the correct algebraic structures assoiciated with these soft set operations. In this study, we primarly intend to fill this crucial gap by first correcting the deficiencies in the presentation of the definition of restiricted intersection and revising it. Moreover, in many papers related to these operation, several theorems were presented without their proofs, or there were some incorrect parts in the proofs. In this study, all the proofs based on the function-equality are regularly provided and besides, the relationships between the concept of soft subset and restricted and extended intersection operations are presented for the first time with their detailed proofs. Furhermore, we obtain many new properties of these operations as analogy and counterpart of intersection operation in classical set theory. Moreover, the operations’ full properties and distributions over other soft set operations are throughly investigated to determine the correct algebraic structures the operations form individually and in combination with other soft set operations both in the set of soft sets over the universe and with a fixed parameter set. We demonstrate that the restricted/extended intersection operations, when combined with other kinds of soft set operations, form several significant algebraic structures, such as monoid, bounded semi-lattice, semiring, hemiring, bounded distributive lattice, Bool algebra, De Morgan Algebra, Kleene Algebra, Stone algebra and MV-algebra but with deteailed explanations. In this regard, this overall study represents the most comprehensive analysis of restricted intersection and extended intersection in the literature to date as it covers all of the earlier important research on this topic with the corrected theorems and their proofs, thus advancing the theory by filling the significant gap in the literature, acting as a guide for the beginners of this popular theory, and besides shedding light on the future studies on soft sets.

Etik Beyan

.

Proje Numarası

YOK

Teşekkür

.

Kaynakça

  • 1. Abbas, M., Ali, B. and Romaguera, S. 2014. On generalized soft equality and soft lattice structure. Filomat, Vol. 28, No. 6, pp. 1191-1203.
  • 2. Abbas, M., Ali, M. I. and Romaguera, S. 2017. Generalized operations in soft set theory via relaxed conditions on parameters. Filomat, Vol. 31, No. 19, pp. 5955-5964.
  • 3. Acar, U., Koyuncu, F. and Tanay, B. 2010. Soft sets and soft rings. Computers and Mathematics with Applications, Vol. 59, No. 11, pp. 3458-3463.
  • 4. Akbulut, E. 2024. New type of extended operations of soft sets: Complementary extended difference and lambda operations. Unpublished master thesis, Amasya University the Graduate School of Natural and Applied Sciences, Amasya.
  • 5. Aktas, H. and Çağman, N. 2007. Soft sets and soft groups. Information Science, Vol. 177, No. 13, pp. 2726-2735.
  • 6. Alcantud, J.C.R. and Khameneh, A.Z., Santos-García, G. and Akram, M. 2024. A systematic literature review of soft set theory. Neural Computing and Applications, Vol. 36, pp. 8951–8975.
  • 7. Ali, M. I., Feng, F., Liu, X., Min, W. K. and Shabir, M. 2009. On some new operations in soft set theory. Computers and Mathematics with Applications, Vol. 57, No. 9, pp. 1547-1553.
  • 8. Ali, M. I., Mahmood, M., Rehman, M.U. and Aslam, M. F. 2015. On lattice ordered soft sets, Applied Soft Computing, Vol36, pp. 499-505.
  • 9. Ali, B., Saleem, N., Sundus, N., Khaleeq, S., Saeed, M. and George, R. 2022. A contribution to the theory of soft sets via generalized relaxed operations. Mathematics, Vol. 10, No. 15, pp. 26-36.
  • 10. Ali, M. I., Shabir, M. and Naz, M. 2011. Algebraic structures of soft sets associated with new operations. Computers and Mathematics with Applications, Vol. 61, No. 9, pp. 2647-2654.
  • 11. Al-Shami, T. M. 2019. Investigation and corrigendum to some results related to g-soft equality and gf -soft equality relations. Filomat, Vol. 33, No. 11, pp. 3375-3383.
  • 12. Alshami, T. and El-Shafei, M. 2020. T-soft equality relation. Turkish Journal of Mathematics, Vol. 44, No. 4, pp. 1427-1441.
  • 13. Atagün, A.O., Kamacı, H., Taştekin, İ. and Sezgin, A. 2019. P-properties in near-rings. Journal of Mathematical and Fundamental Sciences, Vol. 51, No. 2, pp. 152-167.
  • 14. Atagün, A. O. and Sezgin, A. 2018. A new view to near-ring theory: Soft near-rings, South East Asian Journal of Mathematics & Mathematical Sciences, Vol. 14, No. 3, pp. 1-14.
  • 15. Atagün, A. O. and Sezgin, A. 2015. Soft subnear-rings, soft ideals and soft N-subgroups of near-rings, Mathematical Sciences Letters, Vol. 7, No. 1, pp. 37-42.
  • 16. Atagün, A.O. and Sezgin, A. 2017. Int-soft substructures of groups and semirings with applications, Applied Mathematics & Information Sciences, Vol. 11, No. 1, pp. 105-113.
  • 17. Atagün, A. O. and Sezgin, A. 2022. More on prime, maximal and principal soft ideals of soft rings. New mathematics and natural computation, Vol. 18, No. 01, pp. 195-207.
  • 18. Aybek, F. 2024. New restricted and extended soft set operations. Unpublished Master Thesis, Amasya University the Graduate School of Natural and Applied Sciences, Amasya.
  • 19. Birkhoff, G. 1967. Lattice theory. American Mathematical Society, Providence, Rhode Island.
  • 20. Clifford, A. H. 1954. Bands of semigroups, Proceedings of the American Mathematical Society, Vol. 5, No. 3, pp. 499–504.
  • 21. Çağman, N. 2021. Conditional complements of sets and their application to group theory. Journal of New Results in Science, Vol. 10, No: 3, pp. 67-74.
  • 22. Çağman, N. and Enginoğlu, S. 2010. Soft set theory and uni-int decision making. European Journal of Operational Research, Vol. 207, No. 2, pp. 848-855.
  • 23. Chang, C.C. 1958. A new proof of the completeness of the Łukasiewicz axioms, Transactions of the American Mathematical Society, Vol. 93, No. 1, pp. 74-80.
  • 24. Demirci, A. M. 2024. New type of extended operations of soft sets: Complementary extended union, plus and theta 0perations. Unpublished Master Thesis, Amasya University the Graduate School of Natural and Applied Sciences, Amasya.
  • 25. Eren, Ö. F. and Çalışıcı, H. 2019. On some operations of soft sets. The Fourth International Conference on Computational Mathematics and Engineering Sciences.
  • 26. Feng, F. and Li, Y. 2013. Soft subsets and soft product operations. Information Sciences, Vol. 232, No. 20, pp. 44-57.
  • 27. Feng, F., Jun, Y. B. and Zhao, X. 2008. Soft semirings. Computers and Mathematics with Applications, Vol. 56, No. 10, pp. 2621-2628.
  • 28. Fu, L. 2011. Notes on soft set operations, ARPN Journal of Systems and Software, Vol. 1, pp. 205-208.
  • 29. Ge, X. and Yang, S.2011. Investigations on some operations of soft sets, World Academy of Science, Engineering and Technology, Vol. 75, pp. 1113-1116.
  • 30. Goodearl, K. R. 1979) Von Neumann Regular Rings. Pitman, Londra.
  • 31. Gulistan, M., Shahzad, M. 2014 On soft KU-algebras, Journal of Algebra, Number Theory: Advances and Applications, Vol. 11, No, 1, pp. 1-20.
  • 32. Gulistan, M., Feng, F., Khan, M., and Sezgin, A. 2018. Characterizations of right weakly regular semigroups in terms of generalized cubic soft sets. Mathematics, No: 6, 293
  • 33. Husain, S. and Shivani, Km. 2018. A study of properties of soft set and its Applications, International Research Journal of Engineering and Technology, Vol. 5, No. 1, pp. 363-3 72.
  • 34. Iftikhar, M., Mahmood, T. 2018. Some results on lattice ordered double framed soft semirings. International Journal of Algebra and Statistics, Vol. 7, pp. 123-140.
  • 35. Irfan Siddique, M., Faisal Iqbal, M., Mahmood, T. and Khan, Q. 2021. On lattice ordered double framed soft rings, Punjab University Journal of Mathematics, Vol. 53, pp. 295-306.
  • 36. Jan, N., Irfan Siddique, M. and Mahmood, T. 2020. On double framed soft rings. Technical Journal, Vol. 25, No. 2, pp. 126-131.
  • 37. Jana, C., Pal, M., Karaaslan, F. and Sezgin, A. 2019. (α, β)-soft intersectional rings and ideals with their applications. New Mathematics and Natural Computation, Vol. 15, No. 2, pp. 333–350.
  • 38. Jun, Y. B. 2008. Soft BCK/BCI-algebras. Computers and Mathematics with Applications, Vol. 56, No. 5, pp. 1408-1413.
  • 39. Jun, Y. B. and Park, C. H. 2008. Applications of soft sets in ideal theory of BCK/BCI-algebras. Information Sciences, Vol. 178, No. 11, pp. 2466-2475.
  • 40. Jun, Y. B. and Yang, X. 2011. A note on the paper combination of interval-valued fuzzy set and soft set. Computers and Mathematics with Applications, Vol. 61, No. 5, pp. 1468-1470.
  • 41. Jun, Y. B., Lee, K. J. and Khan, A. 2010. Soft ordered semigroups. Mathematical Logic Quarterly, Vol. 56, No. 1, pp. 42-50.
  • 42. Jun, Y. B., Lee, K. J. and Zhan, J. 2009. Soft p-ideals of soft BCI-algebras. Computers and Mathematics with Applications, Vol. 58, No. 10, pp. 2060-2068.
  • 43. Jun, Y. B., Song, S. Z. and So, K. S. 2011. Soft set theory applied to p-ideals of BCI-algebras related to fuzzy points. Neural Computing and Applications, Vol. 20, No. 8, pp.1313-1320.
  • 44. Karaaslan, F. 2019. Some properties of AG*-groupoids and AG-bands under SI-product Operation. Journal of Intelligent and Fuzzy Systems, Vol. 36, No 1, pp. 231-239.
  • 45. Karaaslan, F., Ullah, A. and Ahmad, I. 2021. Normal bipolar soft subgroups. Fuzzy Information and Engineering, Vol. 13, No. 1, pp. 79-98.
  • 46. Karvellas, P. H. 1974. Inversive semirings. Journal of the Australian Mathematical Society, Vol. 18, No. 3, pp. 277-288.
  • 47. Kazanci, O., Yilmaz, S. and Yamak, S. 2010. Soft sets and soft BCH-algebras. Hacettepe Journal of Mathematics and Statistics, Vol. 39, No. 2, pp. 205-217.
  • 48. Khan, M., Ilyas, F., Gulistan, M. and Anis, S. 2015. A study of soft AG-groupoids, Annals of Fuzzy Mathematics and Informatics, Vol. 9, No. 4, pp. 621–638.
  • 49. Khan, A., Izhar, I., & Sezgin, A. 2017. Characterizations of Abel Grassmann's Groupoids by the properties of their double-framed soft ideals, International Journal of Analysis and Applications, Vol: 15, No. 1, 62-74.
  • 50. Liu, X., Feng, F. and Jun, Y. B. 2012. A note on generalized soft equal relations. Computers and Mathematics with Applications, Vol. 64, No 4, pp. 572-578.
  • 51. Maji, P. K., Biswas, R. and Roy, A. R. 2003. Soft set theory. Computers and Mathematics with Application, Vol. 45, No. 1, pp. 555-562.
  • 52. Mahmood, T. 2020. A novel approach toward bipolar soft sets and their applications, Journal of Mathematics, Vol. 2020, Article ID 4690808.
  • 53. Mahmood, T., Waqas, A., and Rana, M. A.2015. Soft intersectional ideals in ternary semiring. Science International, Vol. 27, No 5, pp. 3929-3934.
  • 54. Mahmood, T., Rehman, Z. U., and Sezgin, A. 2018. Lattice ordered soft near rings. Korean Journal of Mathematics, Vol. 26, No 3, pp. 503-517.
  • 55. Manikantan, T., Ramasany, P., and Sezgin, A. 2023. Soft quasi-ideals of soft near-rings, Sigma Journal of Engineering and Natural Science, Vol. 41, No: 3, 565-574.
  • 56. Memiş, S.2022. Another view on picture fuzzy soft sets and their product operations with soft decision-making. Journal of New Theory, Vol. 38, pp. 1-13.
  • 57. Molodtsov, D. 1999. Soft set theory. Computers and Mathematics with Applications, Vol. 37, No. 1, pp. 19-31.
  • 58. Muştuoğlu, E., Sezgin, A., and Türk, Z.K.2016. Some characterizations on soft uni-groups and normal soft uni-groups. International Journal of Computer Applications, 155 (10), 1-8.
  • 59. Naeem, K., and Memis, S. 2023. Picture fuzzy soft σ-algebra and picture fuzzy soft measure and their applications to multi-criteria decision-making. Granular Computing, Vol. 8, No. 2, pp. 397–410.
  • 60. Neog, I.J and Sut, D.K. 2011. A new approach to the theory of softset, International Journal of Computer Applications, Vol. 32, No 2, pp. 1-6.
  • 61. Onyeozili, I. A. and Gwary T. M. 2014. A study of the fundamentals of soft set theory, International Journal of Scientific & Technology Research, Vol. 3, No. 4, pp. 132-143.
  • 62. Özlü, Ş. and Sezgin, A. 2020. Soft covered ideals in semigroups. Acta Universitatis Sapientiae Mathematica, Vol. 12, No. 2, pp. 317-346.
  • 63. Pant, P., Dagtoros, K., Kholil, M.I. & Vivas, A. 2024. Matrices: Peculiar determinant property, Optimum Science Journal, Vol. 1, pp. 1–7.
  • 64. Park, C. H., Jun, Y. B. and Ozturk, M. A. 2008. Soft WS-algebras. Communications of the Korean Mathematical Society, Vol. 23, No. 3, pp. 313-324.
  • 65. Pei, D. and Miao, D. 2005. From soft sets to information systems, In: Proceedings of Granular Computing (Eds: X. Hu, Q. Liu, A. Skowron, T. Y. Lin, R. R. Yager, B. Zhang) IEEE, Vol. 2, pp. 617-621.
  • 66. Petrich, M. 1973. Introduction to semigroups. Charles E Merrill Publishing Company, Ohio, 198.
  • 67. Reutenauer, C. and Straubing, H. 1984. Inversion of matrices over a commutative semiring. Journal of Algebra, Vol. 88, No. 2, pp. 350-360.
  • 68. Riaz, M., Hashmi, M. R., Karaaslan, F., Sezgin, A., Shamiri, M. M. A. A. and Khalaf, M. M. 2023. Emerging trends in social networking systems and generation gap with neutrosophic crisp soft mapping. CMES-computer modeling in engineering and sciences, Vol. 136, No. 2, pp. 1759-1783.
  • 69. Qin, K. and Hong, Z. 2010. On soft equality. Journal of Computational and Applied Mathematics, Vol. 234, No. 5, pp. 1347-1355.
  • 70. Sarıalioğlu, M. 2024. New type of extended operations of soft sets: Complementary extended intersection, gamma and star operations. Unpublished Master Thesis, Amasya University the Graduate School of Natural and Applied Sciences, Amasya.
  • 71. Sen, J. 2014.On algebraic structure of soft sets. Annals of Fuzzy Mathematics and Informatics, Vol. 7, No. 6, pp. 1013-1020.
  • 72. Sezer, A. S. and Atagün, A. O. 2016. A new kind of vector space: soft vector space, Southeast Asian Bulletin of Mathematics, Vol. 40, No. 5, pp. 753-770.
  • 73. Sezer, A., Atagün, A. O. and Çağman, N. 2017. N-group SI-action and its applications to N-group theory, Fasciculi Mathematici, No. 52, pp. 139-153.
  • 74. Sezer, A., Atagün, A. O. and Çağman, N. 2013. A new view to N-group theory: soft N-groups, Fasciculi Mathematici, No. 51, pp. 123-140.
  • 75. Sezer, A. S., Çağman, N., Atagün, A. O., Ali, M. I. and Türkmen, E. 2015. Soft intersection semigroups, ideals and bi-Ideals; A New application on semigroup theory I. Filomat, Vol. 29, No. 5, pp. 917-946.
  • 76. Sezer, A. S., Çağman, N. and Atagün, A. O. 2014. Soft intersection interior ideals, quasi-ideals and generalized bi-ideals; A new approach to semigroup theory II. J. Multiple-Valued Logic and Soft Computing, Vol. 23, No. 1-2, pp. 161-207.
  • 77. Sezgin, A. A new approach to semigroup theory I: Soft union semigroups, ideals and bi-ideals. 2016. Algebra Letters, Vol. 2016, No. 3, pp. 1-46.
  • 78. Sezgin, A. and İlgin, A. 2024. Soft intersection almost subsemigroups of semigroups. International Journal of Mathematics and Physics, Vol. 15, No. 1, pp. 13-20.
  • 79. Sezgin, A. and Atagün, A. O. 2011. On operations of soft sets. Computers and Mathematics with Applications, Vol. 61, No. 5, pp. 1457-1467.
  • 80. Sezgin, A., Atagün, A. O and Çağman N. 2025. A complete study on and-product of soft sets. Sigma Journal of Engineering and Natural Sciences, Vol. 43, No. 1, pp. 1−14.
  • 81. Sezgin, A., Atagün, A. O., Çağman, N. and Demir, H. On near-rings with soft union ideals and applications. 2022. New Mathematics and Natural Computation, Vol. 18, No. 2, pp. 495-511.
  • 82. Sezgin, A., Aybek, F. and Atagün, A. O. 2023a. A new soft set operation: Complementary soft binary piecewise intersection operation. Black Sea Journal of Engineering and Science, Vol. 6, No. 4, pp. 330-346.
  • 83. Sezgin, A., Aybek, F. and Güngör, N. B. 2023b. A new soft set operation: Complementary soft binary piecewise union operation. Acta Informatica Malaysia, Vol. 7, No 1, pp. 38-53.
  • 84. Sezgin, A. and Çağman, N. 2024. A new soft set operation: Complementary soft binary piecewise difference operation. Osmaniye Korkut Ata University Journal of the Institute of Science and Technology, Vol.7, No. 1, pp. 1-37.
  • 85. Sezgin, A. and Çağman, N. 2025. An Extensive Study on Restricted and Extended Symmetric Difference Operations of Soft Sets, Utilitas Mathematica. in press.
  • 86. Sezgin, A., Çağman, N. and Atagün, A. O. 2017. A completely new view to soft intersection rings via soft uni-int product, Applied Soft Computing, Vol. 54, pp. 366-392.
  • 87. Sezgin, A., Çağman, N., Atagün, A. O. and Aybek, F. 2023c. Complemental binary operations of sets and their application to group theory. Matrix Science Mathematic, Vol. 7, No. 2, pp. 99-106.
  • 88. Sezgin, A. and Çalışıcı, H. 2024.A comprehensıve study on soft binary piecewise difference operation, Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B- Teorik Bilimler, Vol. 12, No. 1, pp. 1-23.
  • 89. Sezgin, A. and Dagtoros, K. 2023. Complementary soft binary piecewise symmetric difference operation: A novel soft set operation. Scientific Journal of Mehmet Akif Ersoy University, Vol. 6, No. 2, pp. 31-45.
  • 90. Sezgin, A. and Demirci, A. M. 2023. A new soft set operation: Complementary soft binary piecewise star operation. Ikonion Journal of Mathematics, Vol. 5, No. 2, pp. 24-52.
  • 91. Sezgin, A. and Onur, B. 2024. Soft intersection almost bi-ideals of semigroups. Systemic Analytics, Vol. 2, No. 1, pp. 95-105.
  • 92. Sezgin, A., Onur, B. and İlgin, A. 2024. Soft intersection almost tri-ideals of semigroups. SciNexuses, No. 1, pp. 126-138.
  • 93. Sezgin, A. and Orbay, M. 2022. Analysis of semigroups with soft intersection ideals, Acta Universitatis Sapientiae, Mathematica, Vol. 14, No: 2, pp. 166-210.
  • 94. Sezgin, A. and Sarıalioğlu, M. 2024a. A new soft set operation: Complementary soft binary piecewise theta operation. Journal of Kadirli Faculty of Applied Sciences, Vol. 4, No. 2, pp. 325-357.
  • 95. Sezgin, A. and Sarıalioğlu, M. 2024b. Complementary extended gamma operation: A new soft set operation, Natural and Applied Sciences Journal, Vol. 7, No. 1, pp.15-44.
  • 96. Sezgin, A., Shahzad, A. and Mehmood, A. 2019. A new operation on soft sets: Extended difference of soft sets. Journal of New Theory, Vol. 27, pp. 33-42.
  • 97. Sezgin, A. and Şenyiğit, E. 2025. A new product for soft sets with its decision-making: soft star-product. Big Data and Computing Visions, No. 5, Vol. 1, pp. 52-73.
  • 98. Sezgin, A. and Yavuz, E. 2023a. A new soft set operation: Soft binary piecewise symmetric difference operation. Necmettin Erbakan University Journal of Science and Engineering, Vol. 5, No. 2, pp. 150-168.
  • 99. Sezgin, A. and Yavuz, E. 2023b. A new soft set operation: Complementary soft binary piecewise lambda operation. Sinop University Journal of Natural Sciences, Vol. 8, No. 2, pp. 101-133.
  • 100. Sezgin, A. and Yavuz, E. 2024. Soft binary piecewise plus operation: A new type of operation for soft sets, Uncertainty Discourse and Applications, Vol. 1, No. 1, pp. 79-100.
  • 101. Singh, D. and Onyeozili, I. A. 2012a. Notes on soft matrices operations. ARPN Journal of Science and Technology, Vol. 2, No. 9, pp. 861-869.
  • 102. Singh, D. and Onyeozili, I. A.2012b. On some new properties on soft set operations. International Journal of Computer Applications, Vol. 59, No. 4, pp. 39-44.
  • 103. Singh, D. and Onyeozili, I. A. 2012c. Some results on distributive and absorption properties on soft operations. IOSR Journal of Mathematics (IOSR-JM), Vol. 4, No. 2, pp. 18-30.
  • 104. Singh, D. and Onyeozili, I. A. 2012d. Some conceptual misunderstanding of the fundamentals of soft set theory. ARPN Journal of Systems and Software, Vol. 2, No. 9, pp. 251-254.
  • 105. Stojanovic, N. S. 2021. A new operation on soft sets: Extended symmetric difference of soft sets. Military Technical Courier, Vol. 69, No. 4, pp. 779-791.
  • 106. Sun, Q. M., Zhang, Z. L., and Liu, J. 2008. Soft sets and soft modules. In Rough Sets and Knowledge Technology: Third International Conference, RSKT 2008, Chengdu, China, May 17-19, 2008. Proceedings 3 (pp. 403-409). Springer Berlin Heidelberg.
  • 107. Tunçay, M. and Sezgin, A. 2016. Soft union ring and its applications to ring theory, International Journal of Computer Applications, Vol. 151, No. 9, 7-13.
  • 108. Ullah, A., Karaaslan, F. and Ahmad, I. 2018. Soft uni-abel-grassmann's groups. European Journal of Pure and Applied Mathematics, Vol. 11, No. 2, pp.517-536.
  • 109. Vandiver, H. S. 1934. Note on a simple type of algebra in which the cancellation law of addition does not hold. Bulletin of the American Mathematical Society, Vol. 40, No. 12, pp. 914-920.
  • 110. Yang, C. F. 2008. A note on: Soft set theory. Computers and Mathematics with Applications, Vol. 56, No. 7, pp. 1899-1900.
  • 111. Yavuz, E. 2024. Soft binary piecewise operations and their properties. Unpublished Master Thesis, Amasya University the Graduate School of Natural and Applied Sciences, Amasya.
  • 112. Zhan, J. and Jun, Y. B. 2010. Soft BL-algebras based on fuzzy sets. Computers and Mathematics with Applications, Vol. 59, No. 6, pp. 2037-2046.
  • 113. Zhu, P. and Wen, Q. 2013. Operations on soft sets revisited, Journal of Applied Mathematics, Vol. 2013, Article ID 105752, 7 pages.
Toplam 113 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebir ve Sayı Teorisi
Bölüm Makaleler
Yazarlar

Aslıhan Sezgin 0000-0002-1519-7294

Hakan Kökçü 0009-0002-7229-5816

Akın Osman Atagün 0000-0002-2131-9980

Proje Numarası YOK
Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 4 Ocak 2025
Kabul Tarihi 13 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 1

Kaynak Göster

APA Sezgin, A., Kökçü, H., & Atagün, A. O. (2025). A Comprehensive Study on Restricted and Extended Intersection Operations of Soft Sets. Natural and Applied Sciences Journal, 8(1), 44-111. https://doi.org/10.38061/idunas.1613387