Araştırma Makalesi
BibTex RIS Kaynak Göster

BI-AMALGAMATION OF SMALL WEAK GLOBAL DIMENSION

Yıl 2017, , 127 - 136, 17.01.2017
https://doi.org/10.24330/ieja.296160

Öz

In this paper, we characterize the bi-Amalgamations of small weak
global dimension. The new results compare to previous works carried on various
settings of duplications and amalgamations, and capitalize on recent results
on bi-amalgamations

Kaynakça

  • [1] K. Alaoui Ismaili and N. Mahdou, Coherence in amalgamated algebra along an
  • ideal, Bull. Iranian Math. Soc., 41(3) (2015), 625-632.
  • [2] S. Bazzoni and S. Glaz, Pr¨ufer rings, in: J. Brewer, S. Glaz, W. Heinzer,
  • B. Olberding (Eds.), Multiplicative ideal theory in commutative algebra: A
  • tribute to the work of Robert Gilmer, Springer, New York, (2006), 55–72.
  • [3] M. B. Boisen, Jr. and P. B. Sheldon, CPI-extensions: overrings of integral
  • domains with special prime spectrum, Canad. J. Math., 29(4) (1977), 722-737.
  • [4] M. Chhiti, M. Jarrar, S. Kabbaj and N. Mahdou, Pr¨ufer conditions in an amalgamated
  • duplication of a ring along an ideal, Comm. Algebra, 43(1) (2015),249-261.
  • [5] M. D’Anna and M. Fontana, The amalgamated duplication of a ring along a
  • [6] M. D’Anna and M. Fontana, An amalgamated duplication of a ring along an
  • [7] M. D’Anna, C. A. Finacchiaro and M. Fontana, Amalgamated algebras along
  • an ideal, Commutative algebra and its applications, Walter de Gruyter, Berlin,(2009), 155–172.
  • [9] L. Fuchs, Uber die ideale arithmetischer ringe, Comment. Math. Helv., 23(1949), 334-341.
  • [10] S. Glaz, Commutative Coherent Rings, Lecture Notes in Math., 1371, SpringerVerlag,Berlin, 1989.
  • [11] S. Greco and P. Salmon, Topics in m-Adic Topologies, Springer-Verlag, Berlin,Heidelberg, 1971.
  • [12] C. U. Jensen, Arithmetical rings, Acta Math. Acad. Sci. Hungar., 17 (1966),115-123.
  • [8] M. D’Anna, C. A. Finacchiaro and M. Fontana, Properties of chains of prime
  • ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra, 214(9)
  • (2010), 1633–1641.
Yıl 2017, , 127 - 136, 17.01.2017
https://doi.org/10.24330/ieja.296160

Öz

Kaynakça

  • [1] K. Alaoui Ismaili and N. Mahdou, Coherence in amalgamated algebra along an
  • ideal, Bull. Iranian Math. Soc., 41(3) (2015), 625-632.
  • [2] S. Bazzoni and S. Glaz, Pr¨ufer rings, in: J. Brewer, S. Glaz, W. Heinzer,
  • B. Olberding (Eds.), Multiplicative ideal theory in commutative algebra: A
  • tribute to the work of Robert Gilmer, Springer, New York, (2006), 55–72.
  • [3] M. B. Boisen, Jr. and P. B. Sheldon, CPI-extensions: overrings of integral
  • domains with special prime spectrum, Canad. J. Math., 29(4) (1977), 722-737.
  • [4] M. Chhiti, M. Jarrar, S. Kabbaj and N. Mahdou, Pr¨ufer conditions in an amalgamated
  • duplication of a ring along an ideal, Comm. Algebra, 43(1) (2015),249-261.
  • [5] M. D’Anna and M. Fontana, The amalgamated duplication of a ring along a
  • [6] M. D’Anna and M. Fontana, An amalgamated duplication of a ring along an
  • [7] M. D’Anna, C. A. Finacchiaro and M. Fontana, Amalgamated algebras along
  • an ideal, Commutative algebra and its applications, Walter de Gruyter, Berlin,(2009), 155–172.
  • [9] L. Fuchs, Uber die ideale arithmetischer ringe, Comment. Math. Helv., 23(1949), 334-341.
  • [10] S. Glaz, Commutative Coherent Rings, Lecture Notes in Math., 1371, SpringerVerlag,Berlin, 1989.
  • [11] S. Greco and P. Salmon, Topics in m-Adic Topologies, Springer-Verlag, Berlin,Heidelberg, 1971.
  • [12] C. U. Jensen, Arithmetical rings, Acta Math. Acad. Sci. Hungar., 17 (1966),115-123.
  • [8] M. D’Anna, C. A. Finacchiaro and M. Fontana, Properties of chains of prime
  • ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra, 214(9)
  • (2010), 1633–1641.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Konular Matematik
Bölüm Makaleler
Yazarlar

Mohammed Tamekkante Bu kişi benim

El Mehdi Bouba Bu kişi benim

Yayımlanma Tarihi 17 Ocak 2017
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Tamekkante, M., & Bouba, E. M. (2017). BI-AMALGAMATION OF SMALL WEAK GLOBAL DIMENSION. International Electronic Journal of Algebra, 21(21), 127-136. https://doi.org/10.24330/ieja.296160
AMA Tamekkante M, Bouba EM. BI-AMALGAMATION OF SMALL WEAK GLOBAL DIMENSION. IEJA. Ocak 2017;21(21):127-136. doi:10.24330/ieja.296160
Chicago Tamekkante, Mohammed, ve El Mehdi Bouba. “BI-AMALGAMATION OF SMALL WEAK GLOBAL DIMENSION”. International Electronic Journal of Algebra 21, sy. 21 (Ocak 2017): 127-36. https://doi.org/10.24330/ieja.296160.
EndNote Tamekkante M, Bouba EM (01 Ocak 2017) BI-AMALGAMATION OF SMALL WEAK GLOBAL DIMENSION. International Electronic Journal of Algebra 21 21 127–136.
IEEE M. Tamekkante ve E. M. Bouba, “BI-AMALGAMATION OF SMALL WEAK GLOBAL DIMENSION”, IEJA, c. 21, sy. 21, ss. 127–136, 2017, doi: 10.24330/ieja.296160.
ISNAD Tamekkante, Mohammed - Bouba, El Mehdi. “BI-AMALGAMATION OF SMALL WEAK GLOBAL DIMENSION”. International Electronic Journal of Algebra 21/21 (Ocak 2017), 127-136. https://doi.org/10.24330/ieja.296160.
JAMA Tamekkante M, Bouba EM. BI-AMALGAMATION OF SMALL WEAK GLOBAL DIMENSION. IEJA. 2017;21:127–136.
MLA Tamekkante, Mohammed ve El Mehdi Bouba. “BI-AMALGAMATION OF SMALL WEAK GLOBAL DIMENSION”. International Electronic Journal of Algebra, c. 21, sy. 21, 2017, ss. 127-36, doi:10.24330/ieja.296160.
Vancouver Tamekkante M, Bouba EM. BI-AMALGAMATION OF SMALL WEAK GLOBAL DIMENSION. IEJA. 2017;21(21):127-36.