Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, , 143 - 152, 11.01.2018
https://doi.org/10.24330/ieja.373656

Öz

Kaynakça

  • M. Alkan and A. Harmanci, On summand sum and summand intersection property of modules, Turkish J. Math., 26(2) (2002), 131-147.
  • V. Camillo, Y. Ibrahim, M. Yousif and Y. Zhou, Simple-direct-injective mod- ules, J. Algebra, 420 (2014), 39-53.
  • H. Q. Dinh, A note on pseudo-injective modules, Comm. Algebra, 33(2) (2005), 361-369.
  • N. Er, S. Singh and A. K. Srivastava, Rings and modules which are stable under automorphisms of their injective hulls, J. Algebra, 379 (2013), 223-229.
  • J. L. Garcia, Properties of direct summands of modules, Comm. Algebra, 17(1) (1989), 73-92.
  • A. W. Goldie, Torsion-free modules and rings, J. Algebra, 1 (1964), 268-287.
  • G. Lee, S. T. Rizvi and C. S. Roman, Dual Rickart modules, Comm. Algebra, 39(11) (2011), 4036-4058.
  • T. K. Lee and Y. Zhou, Modules which are invariant under automorphisms of their injective hulls, J. Algebra Appl., 12(2) (2013), 1250159 (9 pp).
  • S. H. Mohamed and B. J. Muller, Continuous and Discrete Modules, London Mathematical Society Lecture Note Series, 147, Cambridge University Press, Cambridge, 1990.
  • W. K. Nicholson, Semiregular modules and rings, Canad. J. Math., 28(5) (1976), 1105-1120.
  • W. K. Nicholson and Y. Zhou, Semiregular morphisms, Comm. Algebra, 34(1) (2006), 219-233.
  • B. L. Osofsky, Rings all of whose nitely generated modules are injective, Paci c J. Math., 14 (1964), 645-650.
  • B. L. Osofsky and P. F. Smith, Cyclic modules whose quotients have all com- plement submodules direct summands, J. Algebra, 139(2) (1991), 342-354.
  • V. S. Ramamurthi and K. M. Rangaswamy, On nitely injective modules, J. Austral. Math. Soc., 16 (1973), 239-248.
  • Y. Utumi, On continuous rings and self injective rings, Trans. Amer. Math. Soc., 118 (1965), 158-173.
  • R. Wisbauer, Foundations of Module and Ring Theory, Algebra, Logic and Applications, 3, Gordon and Breach Science Publishers, Philadelphia, PA, 1991.

Finite-direct-injective modules

Yıl 2018, , 143 - 152, 11.01.2018
https://doi.org/10.24330/ieja.373656

Öz

In this paper, we generalize the concept of direct-injective modules
to fi nite-direct-injective modules. Various basic properties of these modules are
studied. We show that the class of fi nite-direct-injective modules lies between
the class of direct-injective modules and the class of simple-direct-injective
modules. Also, we characterize semisimple artinian rings, V -rings and regular
rings in terms of fi nite-direct-injective modules.

Kaynakça

  • M. Alkan and A. Harmanci, On summand sum and summand intersection property of modules, Turkish J. Math., 26(2) (2002), 131-147.
  • V. Camillo, Y. Ibrahim, M. Yousif and Y. Zhou, Simple-direct-injective mod- ules, J. Algebra, 420 (2014), 39-53.
  • H. Q. Dinh, A note on pseudo-injective modules, Comm. Algebra, 33(2) (2005), 361-369.
  • N. Er, S. Singh and A. K. Srivastava, Rings and modules which are stable under automorphisms of their injective hulls, J. Algebra, 379 (2013), 223-229.
  • J. L. Garcia, Properties of direct summands of modules, Comm. Algebra, 17(1) (1989), 73-92.
  • A. W. Goldie, Torsion-free modules and rings, J. Algebra, 1 (1964), 268-287.
  • G. Lee, S. T. Rizvi and C. S. Roman, Dual Rickart modules, Comm. Algebra, 39(11) (2011), 4036-4058.
  • T. K. Lee and Y. Zhou, Modules which are invariant under automorphisms of their injective hulls, J. Algebra Appl., 12(2) (2013), 1250159 (9 pp).
  • S. H. Mohamed and B. J. Muller, Continuous and Discrete Modules, London Mathematical Society Lecture Note Series, 147, Cambridge University Press, Cambridge, 1990.
  • W. K. Nicholson, Semiregular modules and rings, Canad. J. Math., 28(5) (1976), 1105-1120.
  • W. K. Nicholson and Y. Zhou, Semiregular morphisms, Comm. Algebra, 34(1) (2006), 219-233.
  • B. L. Osofsky, Rings all of whose nitely generated modules are injective, Paci c J. Math., 14 (1964), 645-650.
  • B. L. Osofsky and P. F. Smith, Cyclic modules whose quotients have all com- plement submodules direct summands, J. Algebra, 139(2) (1991), 342-354.
  • V. S. Ramamurthi and K. M. Rangaswamy, On nitely injective modules, J. Austral. Math. Soc., 16 (1973), 239-248.
  • Y. Utumi, On continuous rings and self injective rings, Trans. Amer. Math. Soc., 118 (1965), 158-173.
  • R. Wisbauer, Foundations of Module and Ring Theory, Algebra, Logic and Applications, 3, Gordon and Breach Science Publishers, Philadelphia, PA, 1991.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Sanjeev Kumar Maurya Bu kişi benim

Ashok Ji Gupta Bu kişi benim

Yayımlanma Tarihi 11 Ocak 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Maurya, S. K., & Gupta, A. J. (2018). Finite-direct-injective modules. International Electronic Journal of Algebra, 23(23), 143-152. https://doi.org/10.24330/ieja.373656
AMA Maurya SK, Gupta AJ. Finite-direct-injective modules. IEJA. Ocak 2018;23(23):143-152. doi:10.24330/ieja.373656
Chicago Maurya, Sanjeev Kumar, ve Ashok Ji Gupta. “Finite-Direct-Injective Modules”. International Electronic Journal of Algebra 23, sy. 23 (Ocak 2018): 143-52. https://doi.org/10.24330/ieja.373656.
EndNote Maurya SK, Gupta AJ (01 Ocak 2018) Finite-direct-injective modules. International Electronic Journal of Algebra 23 23 143–152.
IEEE S. K. Maurya ve A. J. Gupta, “Finite-direct-injective modules”, IEJA, c. 23, sy. 23, ss. 143–152, 2018, doi: 10.24330/ieja.373656.
ISNAD Maurya, Sanjeev Kumar - Gupta, Ashok Ji. “Finite-Direct-Injective Modules”. International Electronic Journal of Algebra 23/23 (Ocak 2018), 143-152. https://doi.org/10.24330/ieja.373656.
JAMA Maurya SK, Gupta AJ. Finite-direct-injective modules. IEJA. 2018;23:143–152.
MLA Maurya, Sanjeev Kumar ve Ashok Ji Gupta. “Finite-Direct-Injective Modules”. International Electronic Journal of Algebra, c. 23, sy. 23, 2018, ss. 143-52, doi:10.24330/ieja.373656.
Vancouver Maurya SK, Gupta AJ. Finite-direct-injective modules. IEJA. 2018;23(23):143-52.