BibTex RIS Cite

INTERSECTION GRAPH OF A SIMPLICIAL COMPLEX

Year 2013, Volume: 13 Issue: 13, 76 - 90, 01.06.2013

Abstract

In this note, firstly we introduce the intersection graph G(∆) of
a simplicial complex ∆, as a graph whose vertices are all facets of ∆ and two
distinct vertices are adjacent if they have non-empty intersection. We investigate
some properties of this graph and simplicial complexes. Moreover, we
apply this graph for finding a couple of upper and lower bounds for the vertex
covering number of ∆. Also, we introduce and study the intersection ideal of
a simplicial complex.

References

  • M. Afkhami and K. Khashyarmanesh, The cozero-divisor graph of a commu- tative ring, Southeast Asian Bull. Math., 35 (2011), 753–762.
  • D. D. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra, 320 (2008), 2706–2719.
  • I. Beck, Coloring of commutative rings, J. Algebra, 116 (1998), 208–226.
  • J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., New York, 1976.
  • J. Bosak, The graphs of semigroups, Theory of Graphs and its Applica- tions, (Proc. Sympos. Smolenice, 1963), Publ. House Czechoslovak Acad. Sci., Prague, (1964), 119–125.
  • W. Bruns and J. Herzog, Cohen-Macaulay Rings, Vol. 39, Cambridge Studies in Advanced Mathematics, Revised Edition, 1998.
  • M. Capobianco and J. Molluzzo, Examples and Counterexamples in Graph Theory, New York: North-Holland, 1978.
  • I. Chakrabarty, S. Ghosh, T. K. Mukherjee and M. K. Sen, Intersection graphs of ideals of rings, Discrete Math., 309(17) (2009), 5381–5392.
  • P. Chen, A kind of graph struture of rings, Algebra Colloq., 10(2) (2003), –238.
  • B. Csakany and G. Pollak, The graph of subgroups of a finite group, Czechoslo- vak Math. J., 19(94) (1969), 241–247.
  • B. A. Davey and H. A. Priestley, Introduction to Lattices and Order, Cam- bridge University Press, 2002.
  • S. Faridi, Simplicial trees are sequentially Cohen-Macaulay, J. Pure Appl. Al- gebra, 190 (2004), 121–136.
  • S. Faridi, Cohen-Macaulay properties of square-free monomial ideals, J. Com- bin. Theory Ser. A, 109(2) (2005), 299–329.
  • S. Faridi and M. Caboara and P. Selinger, Simplicial cycles and the computa- tion of simplicial trees, J. Symbolic Comput., 42 (2007), 74–88.
  • M. Gardner and F. Harary, Characterization of (r, s)-adjacency graphs of com- plexes, Proc. Amer. Math. Soc., 83(1) (1981), 211–214.
  • S. H. Jafari and N. Jafari Rad, Planarity of intersection graphs of ideals of rings, Int. Electron. J. Algebra, 8 (2010), 161–166.
  • T. A. McKee and F. R. McMorris, Topics in Intersection Graph Theory, SIAM Monographs on Discrete Mathematics and Applications, 2, Philadelphia: So- ciety for Industrial and Applied Mathematics, 1999.
  • J. H. Van Lint and R. M. Wilson, A Course in Combinatorics, Cambridge University Press, Cambridge, 2001.
  • B. Zelinka, Intersection graphs of finite abelian groups, Czechoslovak Math. J., (100) (1975), 171–174. Mojgan Afkhami
  • Department of Mathematics University of Neyshabur P.O.Box 91136-899, Neyshabur, Iran e-mail: mojgan.afkhami@yahoo.com Fahimeh Khosh-Ahang
  • Department of Mathematics Ilam University P.O.Box 69315-516, Ilam, Iran e-mail: fahime khosh@yahoo.com
Year 2013, Volume: 13 Issue: 13, 76 - 90, 01.06.2013

Abstract

References

  • M. Afkhami and K. Khashyarmanesh, The cozero-divisor graph of a commu- tative ring, Southeast Asian Bull. Math., 35 (2011), 753–762.
  • D. D. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra, 320 (2008), 2706–2719.
  • I. Beck, Coloring of commutative rings, J. Algebra, 116 (1998), 208–226.
  • J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., New York, 1976.
  • J. Bosak, The graphs of semigroups, Theory of Graphs and its Applica- tions, (Proc. Sympos. Smolenice, 1963), Publ. House Czechoslovak Acad. Sci., Prague, (1964), 119–125.
  • W. Bruns and J. Herzog, Cohen-Macaulay Rings, Vol. 39, Cambridge Studies in Advanced Mathematics, Revised Edition, 1998.
  • M. Capobianco and J. Molluzzo, Examples and Counterexamples in Graph Theory, New York: North-Holland, 1978.
  • I. Chakrabarty, S. Ghosh, T. K. Mukherjee and M. K. Sen, Intersection graphs of ideals of rings, Discrete Math., 309(17) (2009), 5381–5392.
  • P. Chen, A kind of graph struture of rings, Algebra Colloq., 10(2) (2003), –238.
  • B. Csakany and G. Pollak, The graph of subgroups of a finite group, Czechoslo- vak Math. J., 19(94) (1969), 241–247.
  • B. A. Davey and H. A. Priestley, Introduction to Lattices and Order, Cam- bridge University Press, 2002.
  • S. Faridi, Simplicial trees are sequentially Cohen-Macaulay, J. Pure Appl. Al- gebra, 190 (2004), 121–136.
  • S. Faridi, Cohen-Macaulay properties of square-free monomial ideals, J. Com- bin. Theory Ser. A, 109(2) (2005), 299–329.
  • S. Faridi and M. Caboara and P. Selinger, Simplicial cycles and the computa- tion of simplicial trees, J. Symbolic Comput., 42 (2007), 74–88.
  • M. Gardner and F. Harary, Characterization of (r, s)-adjacency graphs of com- plexes, Proc. Amer. Math. Soc., 83(1) (1981), 211–214.
  • S. H. Jafari and N. Jafari Rad, Planarity of intersection graphs of ideals of rings, Int. Electron. J. Algebra, 8 (2010), 161–166.
  • T. A. McKee and F. R. McMorris, Topics in Intersection Graph Theory, SIAM Monographs on Discrete Mathematics and Applications, 2, Philadelphia: So- ciety for Industrial and Applied Mathematics, 1999.
  • J. H. Van Lint and R. M. Wilson, A Course in Combinatorics, Cambridge University Press, Cambridge, 2001.
  • B. Zelinka, Intersection graphs of finite abelian groups, Czechoslovak Math. J., (100) (1975), 171–174. Mojgan Afkhami
  • Department of Mathematics University of Neyshabur P.O.Box 91136-899, Neyshabur, Iran e-mail: mojgan.afkhami@yahoo.com Fahimeh Khosh-Ahang
  • Department of Mathematics Ilam University P.O.Box 69315-516, Ilam, Iran e-mail: fahime khosh@yahoo.com
There are 21 citations in total.

Details

Other ID JA72PT52FF
Journal Section Articles
Authors

M. Afkhami This is me

F. Khosh-ahang This is me

Publication Date June 1, 2013
Published in Issue Year 2013 Volume: 13 Issue: 13

Cite

APA Afkhami, M., & Khosh-ahang, F. (2013). INTERSECTION GRAPH OF A SIMPLICIAL COMPLEX. International Electronic Journal of Algebra, 13(13), 76-90.
AMA Afkhami M, Khosh-ahang F. INTERSECTION GRAPH OF A SIMPLICIAL COMPLEX. IEJA. June 2013;13(13):76-90.
Chicago Afkhami, M., and F. Khosh-ahang. “INTERSECTION GRAPH OF A SIMPLICIAL COMPLEX”. International Electronic Journal of Algebra 13, no. 13 (June 2013): 76-90.
EndNote Afkhami M, Khosh-ahang F (June 1, 2013) INTERSECTION GRAPH OF A SIMPLICIAL COMPLEX. International Electronic Journal of Algebra 13 13 76–90.
IEEE M. Afkhami and F. Khosh-ahang, “INTERSECTION GRAPH OF A SIMPLICIAL COMPLEX”, IEJA, vol. 13, no. 13, pp. 76–90, 2013.
ISNAD Afkhami, M. - Khosh-ahang, F. “INTERSECTION GRAPH OF A SIMPLICIAL COMPLEX”. International Electronic Journal of Algebra 13/13 (June 2013), 76-90.
JAMA Afkhami M, Khosh-ahang F. INTERSECTION GRAPH OF A SIMPLICIAL COMPLEX. IEJA. 2013;13:76–90.
MLA Afkhami, M. and F. Khosh-ahang. “INTERSECTION GRAPH OF A SIMPLICIAL COMPLEX”. International Electronic Journal of Algebra, vol. 13, no. 13, 2013, pp. 76-90.
Vancouver Afkhami M, Khosh-ahang F. INTERSECTION GRAPH OF A SIMPLICIAL COMPLEX. IEJA. 2013;13(13):76-90.