BibTex RIS Kaynak Göster

GENERALISED ASSOCIATED PRIMES AND RADICALS OF SUBMODULES

Yıl 2008, Cilt: 4 Sayı: 4, 159 - 176, 01.12.2008

Öz

A challenging problem in recent years has been to find a good description of the radical of a submodule N of a (Noetherian) module M over a commutative ring, where the radical of N is the intersection of all prime submodules of M which contain N. In this paper we give a description of the radical of N in a Noetherian module M which is amenable to computation either by hand in simple cases or by using a computer algebra system in other cases, and illustrate this by examples.

Kaynakça

  • R. B. Ash, A course http://www.math.uiuc.edu/ r-ash/ComAlg.html, 2003. in commutative algebra, Available at
  • D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Springer-Verlag, New York, 1995.
  • D. Eisenbud, C. Huneke, and W. Vasconcelos, Direct methods for primary decomposition, Invent. Math., 110 (1992), 207-235.
  • L. Fuchs, W. Heinzer, and B. Olberding, Commutative ideal theory without finiteness conditions: Primal ideals, Trans. Amer. Math. Soc., 357 (2005), 2798.
  • J. Jenkins and P. F. Smith, On the prime radical of a module over a commu- tative ring, Comm. Algebra, 20 (1992), 3593-3602.
  • Kah Hin Leung and Shing Hing Man, On commutative Noetherian rings which satisfy the radical formula, Glasgow Math. J., 39 (1997), 285-293.
  • C.-P. Lu, Prime submodules of modules, Comm. Math. Univ. Sancti Pauli, 33 (1984), 61-69.
  • C.-P. Lu, M-radicals of submodules in modules II, Math. Japonica, 35 (1990), 1001.
  • A. Marcelo and C. Rodriguez, Radicals of submodules and symmetric algebra, Comm. Algebra, 28 (2000), 4611-4617.
  • R. L. McCasland, Some commutative ring results generalized to unitary mod- ules, Ph.D. thesis, University of Texas at Arlington, 1983.
  • R. L. McCasland and M. E. Moore, On radicals of submodules of finitely gen- erated modules, Canad. Math. Bull., 29 (1986), 37-39.
  • R. L. McCasland and M. E. Moore, On radicals of submodules, Comm. Algebra, (1991), 1327-1341.
  • R. L. McCasland and M. E. Moore, Prime submodules, Comm. Algebra, 20 (1992), 1803-1817.
  • R. L. McCasland, J. B. A. Schmidt, P. F. Smith, and E. M. Stark, Uniform dimension and radical modules, University of Glasgow Preprint 99/19 (1999).
  • R. L. McCasland and P. F. Smith, Prime submodules of Noetherian modules, Rocky Mountain J. Math., 23 (1993), 1041-1062.
  • R. L. McCasland and P. F. Smith, Uniform dimension of modules, Q. J. Math., (2004), 491-498.
  • R. L. McCasland and P. F. Smith, On isolated submodules, Comm. Algebra, (2006), 2977-2988.
  • P. F. Smith, Primary modules over commutative rings, Glasgow. Math. J., 43 (2001), 103-111.
  • Wang Fanggui and R. L. McCasland, On w-modules over strong Mori domains, Comm. Algebra, 25 (1997), 1285-1306. R.L. McCasland
  • School of Informatics University of Edinburgh Edinburgh EH8 9LE, Scotland UK e-mail: rmccasla@inf.ed.ac.uk P.F. Smith Department of Mathematics University of Glasgow Glasgow G12 8QW, Scotland UK e-mail: pfs@maths.gla.ac.uk
Yıl 2008, Cilt: 4 Sayı: 4, 159 - 176, 01.12.2008

Öz

Kaynakça

  • R. B. Ash, A course http://www.math.uiuc.edu/ r-ash/ComAlg.html, 2003. in commutative algebra, Available at
  • D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Springer-Verlag, New York, 1995.
  • D. Eisenbud, C. Huneke, and W. Vasconcelos, Direct methods for primary decomposition, Invent. Math., 110 (1992), 207-235.
  • L. Fuchs, W. Heinzer, and B. Olberding, Commutative ideal theory without finiteness conditions: Primal ideals, Trans. Amer. Math. Soc., 357 (2005), 2798.
  • J. Jenkins and P. F. Smith, On the prime radical of a module over a commu- tative ring, Comm. Algebra, 20 (1992), 3593-3602.
  • Kah Hin Leung and Shing Hing Man, On commutative Noetherian rings which satisfy the radical formula, Glasgow Math. J., 39 (1997), 285-293.
  • C.-P. Lu, Prime submodules of modules, Comm. Math. Univ. Sancti Pauli, 33 (1984), 61-69.
  • C.-P. Lu, M-radicals of submodules in modules II, Math. Japonica, 35 (1990), 1001.
  • A. Marcelo and C. Rodriguez, Radicals of submodules and symmetric algebra, Comm. Algebra, 28 (2000), 4611-4617.
  • R. L. McCasland, Some commutative ring results generalized to unitary mod- ules, Ph.D. thesis, University of Texas at Arlington, 1983.
  • R. L. McCasland and M. E. Moore, On radicals of submodules of finitely gen- erated modules, Canad. Math. Bull., 29 (1986), 37-39.
  • R. L. McCasland and M. E. Moore, On radicals of submodules, Comm. Algebra, (1991), 1327-1341.
  • R. L. McCasland and M. E. Moore, Prime submodules, Comm. Algebra, 20 (1992), 1803-1817.
  • R. L. McCasland, J. B. A. Schmidt, P. F. Smith, and E. M. Stark, Uniform dimension and radical modules, University of Glasgow Preprint 99/19 (1999).
  • R. L. McCasland and P. F. Smith, Prime submodules of Noetherian modules, Rocky Mountain J. Math., 23 (1993), 1041-1062.
  • R. L. McCasland and P. F. Smith, Uniform dimension of modules, Q. J. Math., (2004), 491-498.
  • R. L. McCasland and P. F. Smith, On isolated submodules, Comm. Algebra, (2006), 2977-2988.
  • P. F. Smith, Primary modules over commutative rings, Glasgow. Math. J., 43 (2001), 103-111.
  • Wang Fanggui and R. L. McCasland, On w-modules over strong Mori domains, Comm. Algebra, 25 (1997), 1285-1306. R.L. McCasland
  • School of Informatics University of Edinburgh Edinburgh EH8 9LE, Scotland UK e-mail: rmccasla@inf.ed.ac.uk P.F. Smith Department of Mathematics University of Glasgow Glasgow G12 8QW, Scotland UK e-mail: pfs@maths.gla.ac.uk
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA57KV28RM
Bölüm Makaleler
Yazarlar

R. L. Mccasland Bu kişi benim

P. F. Smith Bu kişi benim

Yayımlanma Tarihi 1 Aralık 2008
Yayımlandığı Sayı Yıl 2008 Cilt: 4 Sayı: 4

Kaynak Göster

APA Mccasland, R. L., & Smith, P. F. (2008). GENERALISED ASSOCIATED PRIMES AND RADICALS OF SUBMODULES. International Electronic Journal of Algebra, 4(4), 159-176.
AMA Mccasland RL, Smith PF. GENERALISED ASSOCIATED PRIMES AND RADICALS OF SUBMODULES. IEJA. Aralık 2008;4(4):159-176.
Chicago Mccasland, R. L., ve P. F. Smith. “GENERALISED ASSOCIATED PRIMES AND RADICALS OF SUBMODULES”. International Electronic Journal of Algebra 4, sy. 4 (Aralık 2008): 159-76.
EndNote Mccasland RL, Smith PF (01 Aralık 2008) GENERALISED ASSOCIATED PRIMES AND RADICALS OF SUBMODULES. International Electronic Journal of Algebra 4 4 159–176.
IEEE R. L. Mccasland ve P. F. Smith, “GENERALISED ASSOCIATED PRIMES AND RADICALS OF SUBMODULES”, IEJA, c. 4, sy. 4, ss. 159–176, 2008.
ISNAD Mccasland, R. L. - Smith, P. F. “GENERALISED ASSOCIATED PRIMES AND RADICALS OF SUBMODULES”. International Electronic Journal of Algebra 4/4 (Aralık 2008), 159-176.
JAMA Mccasland RL, Smith PF. GENERALISED ASSOCIATED PRIMES AND RADICALS OF SUBMODULES. IEJA. 2008;4:159–176.
MLA Mccasland, R. L. ve P. F. Smith. “GENERALISED ASSOCIATED PRIMES AND RADICALS OF SUBMODULES”. International Electronic Journal of Algebra, c. 4, sy. 4, 2008, ss. 159-76.
Vancouver Mccasland RL, Smith PF. GENERALISED ASSOCIATED PRIMES AND RADICALS OF SUBMODULES. IEJA. 2008;4(4):159-76.