We consider the BGG category $\O$ of a quantized universal
enveloping algebra $U_q(\mathfrak{g})$. We call a module $M\in
\O$ tensor-closed if $M\otimes N\in\O$ for any $N\in \O$. In this
paper we prove that $M\in \O$ is tensor-closed if and only if $M$
is finite dimensional. The method used in this paper applies to
the unquantized case as well.
BGG category quantized universal enveloping algebra tensor product formal character
Birincil Dil | İngilizce |
---|---|
Konular | Matematik |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 5 Ocak 2021 |
Yayımlandığı Sayı | Yıl 2021 Cilt: 29 Sayı: 29 |