Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Early Access, 1 - 7
https://doi.org/10.24330/ieja.1496115

Öz

Kaynakça

  • B. DeWitt, Supermanifolds, Second edition, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 1992.
  • P. Fayet and S. Ferrara, Supersymmetry, Phys. Rep., 32C(5) (1977), 249-334.
  • G. Hochschild and J.-P. Serre, Cohomology of Lie algebras, Ann. of Math. (2), 57 (1953), 591-603.
  • N. Jacobson, Lie Algebras, Interscience Tracts in Pure and Applied Mathematics, Interscience Publishers, New York-London, 1962.
  • N Jacobson, Lie Algebras, Republication of the 1962 original, Dover Publications, New York, 1979.
  • J. Q. Liu, Q. G. Qian and K. L. Zheng, The centralizer of~$\frak{sl}(0,3)$ in the generalized Witt Lie superalgebra over fields of prime characteristic, J. Northeast Normal Univ. (Natural Science Edition), 52(1) (2020), 10-12. (Chinese)
  • J. Q. Liu, Q. G. Qian and K. L. Zheng, Centralizers of~$\frak{sl}(2,1)$ and~$\frak{sl}(1,2)$ in the generalized Witt Lie superalgebra over fields of prime characteristics, Journal of Harbin University of Science and Technology, 26(1) (2021), 144-148. (Chinese)
  • R. Mokhtari, R. Hoseini Sani and A. Chenaghlou, Supersymmetry approach to the Dirac equation in the presence of the deformed Woods-Saxon potential, Eur. Phys. J. Plus, 134 (2019), 446 (7 pp).
  • J. J. Rotman, An Introduction to Homological Algebra, 2nd ed, Universitext, Springer, New York, 2009.
  • M. Scheunert, The Theory of Lie Superalgebras. An Introduction, Lecture Notes in Math., 716, Springer, Berlin, 1979.
  • M. Scheunert and R. B. Zhang, Cohomology of Lie superalgebras and their generalizations, J. Math. Phys., 39(9) (1998), 5024-5061.
  • L. Y. Tian, Y. Hou and K. L. Zheng, The centralizer of~$\frak{gl}(0,3)$ in the generalized Witt Lie superalgebra over fields of prime characteristic, Natur. Sci. J. Harbin Normal Univ., 32(2) (2016), 5-7. (Chinese)
  • Y. Zhang, Finite-dimensional Lie superalgebras of Cartan type over fields of prime characteristic, Chinese Sci. Bull., 42(9) (1997), 720-724.
  • Q. Zhang and Y. Zhang, Derivation algebras of the modular Lie superalgebras $W$ and $S$ of Cartan-type, Acta Math. Sci. Ser. B (Engl. Ed.), 20(1) (2000), 137-144.
  • D. Mao and K. L. Zheng, Centralizer of general linear Lie superalgebra in generalized Witt Lie superalgebra, J. Jilin Univ. Sci., 60(1) (2022), 27-34. (Chinese)

The centralizer of~$\frak{sl}(0,n)$ in the generalized Witt Lie superalgebra over fields of prime characteristic

Yıl 2024, Early Access, 1 - 7
https://doi.org/10.24330/ieja.1496115

Öz

This paper considers centralizers of the Lie superalgebra~$\frak{sl}(0,n)$ over prime characteristic fields. Using homological methods, the centralizers of the even and odd parts of ~$\frak{sl}(0,n)$ in the generalized Witt Lie superalgebra are calculated and a summary of their structural properties is provided.

Kaynakça

  • B. DeWitt, Supermanifolds, Second edition, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 1992.
  • P. Fayet and S. Ferrara, Supersymmetry, Phys. Rep., 32C(5) (1977), 249-334.
  • G. Hochschild and J.-P. Serre, Cohomology of Lie algebras, Ann. of Math. (2), 57 (1953), 591-603.
  • N. Jacobson, Lie Algebras, Interscience Tracts in Pure and Applied Mathematics, Interscience Publishers, New York-London, 1962.
  • N Jacobson, Lie Algebras, Republication of the 1962 original, Dover Publications, New York, 1979.
  • J. Q. Liu, Q. G. Qian and K. L. Zheng, The centralizer of~$\frak{sl}(0,3)$ in the generalized Witt Lie superalgebra over fields of prime characteristic, J. Northeast Normal Univ. (Natural Science Edition), 52(1) (2020), 10-12. (Chinese)
  • J. Q. Liu, Q. G. Qian and K. L. Zheng, Centralizers of~$\frak{sl}(2,1)$ and~$\frak{sl}(1,2)$ in the generalized Witt Lie superalgebra over fields of prime characteristics, Journal of Harbin University of Science and Technology, 26(1) (2021), 144-148. (Chinese)
  • R. Mokhtari, R. Hoseini Sani and A. Chenaghlou, Supersymmetry approach to the Dirac equation in the presence of the deformed Woods-Saxon potential, Eur. Phys. J. Plus, 134 (2019), 446 (7 pp).
  • J. J. Rotman, An Introduction to Homological Algebra, 2nd ed, Universitext, Springer, New York, 2009.
  • M. Scheunert, The Theory of Lie Superalgebras. An Introduction, Lecture Notes in Math., 716, Springer, Berlin, 1979.
  • M. Scheunert and R. B. Zhang, Cohomology of Lie superalgebras and their generalizations, J. Math. Phys., 39(9) (1998), 5024-5061.
  • L. Y. Tian, Y. Hou and K. L. Zheng, The centralizer of~$\frak{gl}(0,3)$ in the generalized Witt Lie superalgebra over fields of prime characteristic, Natur. Sci. J. Harbin Normal Univ., 32(2) (2016), 5-7. (Chinese)
  • Y. Zhang, Finite-dimensional Lie superalgebras of Cartan type over fields of prime characteristic, Chinese Sci. Bull., 42(9) (1997), 720-724.
  • Q. Zhang and Y. Zhang, Derivation algebras of the modular Lie superalgebras $W$ and $S$ of Cartan-type, Acta Math. Sci. Ser. B (Engl. Ed.), 20(1) (2000), 137-144.
  • D. Mao and K. L. Zheng, Centralizer of general linear Lie superalgebra in generalized Witt Lie superalgebra, J. Jilin Univ. Sci., 60(1) (2022), 27-34. (Chinese)
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebir ve Sayı Teorisi
Bölüm Makaleler
Yazarlar

Liwen Yu Bu kişi benim

Keli Zheng Bu kişi benim

Erken Görünüm Tarihi 5 Haziran 2024
Yayımlanma Tarihi
Gönderilme Tarihi 16 Nisan 2024
Kabul Tarihi 19 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Early Access

Kaynak Göster

APA Yu, L., & Zheng, K. (2024). The centralizer of~$\frak{sl}(0,n)$ in the generalized Witt Lie superalgebra over fields of prime characteristic. International Electronic Journal of Algebra1-7. https://doi.org/10.24330/ieja.1496115
AMA Yu L, Zheng K. The centralizer of~$\frak{sl}(0,n)$ in the generalized Witt Lie superalgebra over fields of prime characteristic. IEJA. Published online 01 Haziran 2024:1-7. doi:10.24330/ieja.1496115
Chicago Yu, Liwen, ve Keli Zheng. “The Centralizer of~$\frak{sl}(0,n)$ in the Generalized Witt Lie Superalgebra over Fields of Prime Characteristic”. International Electronic Journal of Algebra, Haziran (Haziran 2024), 1-7. https://doi.org/10.24330/ieja.1496115.
EndNote Yu L, Zheng K (01 Haziran 2024) The centralizer of~$\frak{sl}(0,n)$ in the generalized Witt Lie superalgebra over fields of prime characteristic. International Electronic Journal of Algebra 1–7.
IEEE L. Yu ve K. Zheng, “The centralizer of~$\frak{sl}(0,n)$ in the generalized Witt Lie superalgebra over fields of prime characteristic”, IEJA, ss. 1–7, Haziran 2024, doi: 10.24330/ieja.1496115.
ISNAD Yu, Liwen - Zheng, Keli. “The Centralizer of~$\frak{sl}(0,n)$ in the Generalized Witt Lie Superalgebra over Fields of Prime Characteristic”. International Electronic Journal of Algebra. Haziran 2024. 1-7. https://doi.org/10.24330/ieja.1496115.
JAMA Yu L, Zheng K. The centralizer of~$\frak{sl}(0,n)$ in the generalized Witt Lie superalgebra over fields of prime characteristic. IEJA. 2024;:1–7.
MLA Yu, Liwen ve Keli Zheng. “The Centralizer of~$\frak{sl}(0,n)$ in the Generalized Witt Lie Superalgebra over Fields of Prime Characteristic”. International Electronic Journal of Algebra, 2024, ss. 1-7, doi:10.24330/ieja.1496115.
Vancouver Yu L, Zheng K. The centralizer of~$\frak{sl}(0,n)$ in the generalized Witt Lie superalgebra over fields of prime characteristic. IEJA. 2024:1-7.