Let $R$ be a commutative ring and $M$ be an $R$-module. A submodule $N$ of $M$ is called a d-submodule $($resp., an fd-submodule$)$ if $\ann_R(m)\subseteq \ann_R(m')$ $($resp., $\ann_R(F)\subseteq \ann_R(m'))$ for some $m\in N$ $($resp., finite subset $F\subseteq N)$ and $m'\in M$ implies that $m'\in N.$ Many examples, characterizations, and properties of these submodules are given. Moreover, we use them to characterize modules satisfying Property T, reduced modules, and von Neumann regular modules.
Baer submodule d-submodule fd-submodule 0-submodule annihilator
Baer submodule d-submodule fd-submodule 0-submodule annihilator
Birincil Dil | İngilizce |
---|---|
Konular | Matematik |
Bölüm | Makaleler |
Yazarlar | |
Erken Görünüm Tarihi | 11 Mayıs 2023 |
Yayımlanma Tarihi | 10 Temmuz 2023 |
Yayımlandığı Sayı | Yıl 2023 Cilt: 34 Sayı: 34 |