Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 35 Sayı: 35, 90 - 94, 09.01.2024
https://doi.org/10.24330/ieja.1298175

Öz

Kaynakça

  • S. Bazzoni and J. Stovicek, Smashing localizations of rings of weak global dimension at most one, Adv. Math., 305 (2017), 351-401.
  • A. K. Bousfield, The localization of spectra with respect to homology, Topology, 18(4) (1979), 257-281.
  • K. R. Goodearl, von Neumann Regular Rings, Monographs and Studies in Mathematics 4, London, Pitman Publishing, 1979.
  • B. Keller, A remark on the generalized smashing conjecture, Manuscripta Math., 84(2)(1994), 193-198.
  • H. Krause and J. Stovicek, The telescope conjecture for hereditary rings via Ext-orthogonal pairs, Adv. Math., 225(5) (2010), 2341-2364.
  • A. Neeman, The chromatic tower for $D(R)$, Topology, 31(3) (1992), 519-532.
  • D. C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math., 160(2) (1984), 351-414.
  • J. Saroch and J. Stovicek, The countable Telescope Conjecture for module categories, Adv. Math., 219(3) (2008), 1002-1036.

The Telescope Conjecture for von Neumann regular rings

Yıl 2024, Cilt: 35 Sayı: 35, 90 - 94, 09.01.2024
https://doi.org/10.24330/ieja.1298175

Öz

In this note, we show that any epimorphism originating at a von Neumann regular ring (not necessary commutative) is a universal localization. As an application, we prove that the Telescope Conjecture holds for the unbounded derived categories of von Neumann regular rings (not necessary commutative).

Kaynakça

  • S. Bazzoni and J. Stovicek, Smashing localizations of rings of weak global dimension at most one, Adv. Math., 305 (2017), 351-401.
  • A. K. Bousfield, The localization of spectra with respect to homology, Topology, 18(4) (1979), 257-281.
  • K. R. Goodearl, von Neumann Regular Rings, Monographs and Studies in Mathematics 4, London, Pitman Publishing, 1979.
  • B. Keller, A remark on the generalized smashing conjecture, Manuscripta Math., 84(2)(1994), 193-198.
  • H. Krause and J. Stovicek, The telescope conjecture for hereditary rings via Ext-orthogonal pairs, Adv. Math., 225(5) (2010), 2341-2364.
  • A. Neeman, The chromatic tower for $D(R)$, Topology, 31(3) (1992), 519-532.
  • D. C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math., 160(2) (1984), 351-414.
  • J. Saroch and J. Stovicek, The countable Telescope Conjecture for module categories, Adv. Math., 219(3) (2008), 1002-1036.
Toplam 8 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Xiaolei Zhang Bu kişi benim

Erken Görünüm Tarihi 24 Mayıs 2023
Yayımlanma Tarihi 9 Ocak 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 35 Sayı: 35

Kaynak Göster

APA Zhang, X. (2024). The Telescope Conjecture for von Neumann regular rings. International Electronic Journal of Algebra, 35(35), 90-94. https://doi.org/10.24330/ieja.1298175
AMA Zhang X. The Telescope Conjecture for von Neumann regular rings. IEJA. Ocak 2024;35(35):90-94. doi:10.24330/ieja.1298175
Chicago Zhang, Xiaolei. “The Telescope Conjecture for Von Neumann Regular Rings”. International Electronic Journal of Algebra 35, sy. 35 (Ocak 2024): 90-94. https://doi.org/10.24330/ieja.1298175.
EndNote Zhang X (01 Ocak 2024) The Telescope Conjecture for von Neumann regular rings. International Electronic Journal of Algebra 35 35 90–94.
IEEE X. Zhang, “The Telescope Conjecture for von Neumann regular rings”, IEJA, c. 35, sy. 35, ss. 90–94, 2024, doi: 10.24330/ieja.1298175.
ISNAD Zhang, Xiaolei. “The Telescope Conjecture for Von Neumann Regular Rings”. International Electronic Journal of Algebra 35/35 (Ocak 2024), 90-94. https://doi.org/10.24330/ieja.1298175.
JAMA Zhang X. The Telescope Conjecture for von Neumann regular rings. IEJA. 2024;35:90–94.
MLA Zhang, Xiaolei. “The Telescope Conjecture for Von Neumann Regular Rings”. International Electronic Journal of Algebra, c. 35, sy. 35, 2024, ss. 90-94, doi:10.24330/ieja.1298175.
Vancouver Zhang X. The Telescope Conjecture for von Neumann regular rings. IEJA. 2024;35(35):90-4.