Araştırma Makalesi
BibTex RIS Kaynak Göster

Lie structure of the Heisenberg-Weyl algebra

Yıl 2024, Cilt: 35 Sayı: 35, 32 - 60, 09.01.2024
https://doi.org/10.24330/ieja.1326849

Öz

As an associative algebra, the Heisenberg--Weyl algebra $\HWeyl$ is generated by two elements $A$, $B$ subject to the relation $AB-BA=1$. As a Lie algebra, however, where the usual commutator serves as Lie bracket, the elements $A$ and $B$ are not able to generate the whole space $\HWeyl$. We identify a non-nilpotent but solvable Lie subalgebra $\coreLie$ of $\HWeyl$, for which, using some facts from the theory of bases for free Lie algebras, we give a presentation by generators and relations. Under this presentation, we show that, for some algebra isomorphism $\isoH:\HWeyl\into\HWeyl$, the Lie algebra $\HWeyl$ is generated by the generators of $\coreLie$, together with their images under $\isoH$, and that $\HWeyl$ is the sum of $\coreLie$, $\isoH(\coreLie)$ and $\lbrak \coreLie,\isoH(\coreLie)\rbrak$.

Kaynakça

  • M. Arik and D. D. Coon, Hilbert spaces of analytic functions and generalized coherent states, J. Mathematical Phys., 17(4) (1976), 524-527.
  • G. M. Bergman, The diamond lemma for ring theory, Adv. in Math., 29(2) (1978), 178-218.
  • P. Blasiak, G. H. E. Duchamp, A. Horzela, K. A. Penson and A. I. Solomon, Heisenberg-Weyl algebra revisited: combinatorics of words and paths, J. Phys. A 41, 41 (2008), 415204 (8 pp).
  • L. A. Bokut and Y. Chen, Gröbner-Shirshov bases for Lie algebras: after A. I. Shirshov, Southeast Asian Bull. Math., 31(6) (2007), 1057-1076.
  • R. Cantuba, Lie polynomials in $q$-deformed Heisenberg algebras, J. Algebra, 522 (2019), 101-123.
  • R. Cantuba, Compactness property of Lie polynomials in the creation and annihilation operators of the $q$-oscillator, Lett. Math. Phys., 110(10) (2020), 2639-2657.
  • R. Cantuba and S. Silvestrov, Torsion-type q-deformed Heisenberg algebra and its Lie polynomials, In: S. Silvestrov, A. Malyarenko, M. Rancic (eds), Algebraic Structures and Applications, SPAS 2017, Springer Proc. Math. Stat., 317 (2020), Springer, Cham., 575-592.
  • R. Cantuba and S. Silvestrov, Lie polynomial characterization problems, In: S. Silvestrov, A. Malyarenko, M. Rancic (eds), Algebraic Structures and Applications, SPAS 2017, Springer Proc. Math. Stat., 317 (2020), Springer, Cham., 593-601.
  • R. Cantuba and M. A. C. Merciales, An extension of a $q$-deformed Heisenberg algebra and its Lie polynomials, Expo. Math., 39(1) (2021), 1-24.
  • K. T. Chen, R. H. Fox and R. C. Lyndon, Free differential calculus. IV: The quotient groups of the lower central series, Ann. of Math., 68(2) (1958), 81-95.
  • T. Ernst, A Comprehensive Treatment of $q$-Calculus, Birkhauser, Basel, 2012.
  • L. Hellström and S. Silvestrov, Commuting Elements in $q$-Deformed Heisenberg Algebras, World Scientific Publishing Co., Inc., River Edge, NJ, 2000.
  • L. Hellström, The Diamond Lemma for Power Series Algebras, Ph.D. thesis, Umea University, Sweden, 2002.
  • L. Hellström and S. Silvestrov, Two-sided ideals in $q$-deformed Heisenberg algebras, Expo. Math., 23(2) (2005), 99-125.
  • A. Kostrikin and I. R. Shafarevich, {Algebra VI: Combinatorial and Asymptotic Methods of Algebra. Non-associative Structures}, In: A. Kostrikin, I. R. Shafarevich (eds), Combinatorial and asymptotic methods in algebra, Encycl. Math. Sci., 57, Springer, Berlin Heidelberg, 1995.
  • E. Kreyszig, Introductory Functional Analysis with Applications, Wiley Classics Library, John Wiley \& Sons, Inc., New York, 1989.
  • M. Lothaire, Combinatorics on Words, Cambridge University Press, Cambridge, 1997.
  • M. R. Monteiro, L. M. C. S. Rodrigues and S. Wulck, Quantum algebraic nature of the phonon spectrum in $^4$He, Phys. Rev. Lett., 76(7) (1996), 1098-1101.
  • I. Z. Monteiro Alves and V. Petrogradsky, Lie structure of truncated symmetric Poisson algebras, J. Algebra, 488 (2017), 244-281.
  • C. Reutenauer, Free Lie Algebras, The Clarendon Press, Oxford University Press, New York, 1993.
  • D. M. Riley and A. Shalev, The Lie structure of enveloping algebras, J. Algebra, 162(1) (1993), 46-61.
  • D. Shalitin and Y. Tikochinsky, Transformation between the normal and antinormal expansions of boson operators, J. Math. Phys., 20(8) (1979), 1676-1678.
  • A. I. Shirshov, On the bases of a free Lie algebra, In: L. A. Bokut, I. Shestakov, V. Latyshe, E. Zelmanov (eds), Selected works of A.I. Shirshov, Contemporary Mathematicians, Birkhäuser, Basel, (2009), 113-118.
  • A. I. Shirshov, Some algorithmic problem for Lie algebras, In: L. A. Bokut, I. Shestakov, V. Latyshev, E. Zelmanov (eds), Selected works of A.I. Shirshov, Contemporary Mathematicians, Birkhäuser, Basel, (2009), 125-130.
  • S. Siciliano and H. Usefi, Lie structure of smash products, Israel J. Math., 217(1) (2017), 93-110.
Yıl 2024, Cilt: 35 Sayı: 35, 32 - 60, 09.01.2024
https://doi.org/10.24330/ieja.1326849

Öz

Kaynakça

  • M. Arik and D. D. Coon, Hilbert spaces of analytic functions and generalized coherent states, J. Mathematical Phys., 17(4) (1976), 524-527.
  • G. M. Bergman, The diamond lemma for ring theory, Adv. in Math., 29(2) (1978), 178-218.
  • P. Blasiak, G. H. E. Duchamp, A. Horzela, K. A. Penson and A. I. Solomon, Heisenberg-Weyl algebra revisited: combinatorics of words and paths, J. Phys. A 41, 41 (2008), 415204 (8 pp).
  • L. A. Bokut and Y. Chen, Gröbner-Shirshov bases for Lie algebras: after A. I. Shirshov, Southeast Asian Bull. Math., 31(6) (2007), 1057-1076.
  • R. Cantuba, Lie polynomials in $q$-deformed Heisenberg algebras, J. Algebra, 522 (2019), 101-123.
  • R. Cantuba, Compactness property of Lie polynomials in the creation and annihilation operators of the $q$-oscillator, Lett. Math. Phys., 110(10) (2020), 2639-2657.
  • R. Cantuba and S. Silvestrov, Torsion-type q-deformed Heisenberg algebra and its Lie polynomials, In: S. Silvestrov, A. Malyarenko, M. Rancic (eds), Algebraic Structures and Applications, SPAS 2017, Springer Proc. Math. Stat., 317 (2020), Springer, Cham., 575-592.
  • R. Cantuba and S. Silvestrov, Lie polynomial characterization problems, In: S. Silvestrov, A. Malyarenko, M. Rancic (eds), Algebraic Structures and Applications, SPAS 2017, Springer Proc. Math. Stat., 317 (2020), Springer, Cham., 593-601.
  • R. Cantuba and M. A. C. Merciales, An extension of a $q$-deformed Heisenberg algebra and its Lie polynomials, Expo. Math., 39(1) (2021), 1-24.
  • K. T. Chen, R. H. Fox and R. C. Lyndon, Free differential calculus. IV: The quotient groups of the lower central series, Ann. of Math., 68(2) (1958), 81-95.
  • T. Ernst, A Comprehensive Treatment of $q$-Calculus, Birkhauser, Basel, 2012.
  • L. Hellström and S. Silvestrov, Commuting Elements in $q$-Deformed Heisenberg Algebras, World Scientific Publishing Co., Inc., River Edge, NJ, 2000.
  • L. Hellström, The Diamond Lemma for Power Series Algebras, Ph.D. thesis, Umea University, Sweden, 2002.
  • L. Hellström and S. Silvestrov, Two-sided ideals in $q$-deformed Heisenberg algebras, Expo. Math., 23(2) (2005), 99-125.
  • A. Kostrikin and I. R. Shafarevich, {Algebra VI: Combinatorial and Asymptotic Methods of Algebra. Non-associative Structures}, In: A. Kostrikin, I. R. Shafarevich (eds), Combinatorial and asymptotic methods in algebra, Encycl. Math. Sci., 57, Springer, Berlin Heidelberg, 1995.
  • E. Kreyszig, Introductory Functional Analysis with Applications, Wiley Classics Library, John Wiley \& Sons, Inc., New York, 1989.
  • M. Lothaire, Combinatorics on Words, Cambridge University Press, Cambridge, 1997.
  • M. R. Monteiro, L. M. C. S. Rodrigues and S. Wulck, Quantum algebraic nature of the phonon spectrum in $^4$He, Phys. Rev. Lett., 76(7) (1996), 1098-1101.
  • I. Z. Monteiro Alves and V. Petrogradsky, Lie structure of truncated symmetric Poisson algebras, J. Algebra, 488 (2017), 244-281.
  • C. Reutenauer, Free Lie Algebras, The Clarendon Press, Oxford University Press, New York, 1993.
  • D. M. Riley and A. Shalev, The Lie structure of enveloping algebras, J. Algebra, 162(1) (1993), 46-61.
  • D. Shalitin and Y. Tikochinsky, Transformation between the normal and antinormal expansions of boson operators, J. Math. Phys., 20(8) (1979), 1676-1678.
  • A. I. Shirshov, On the bases of a free Lie algebra, In: L. A. Bokut, I. Shestakov, V. Latyshe, E. Zelmanov (eds), Selected works of A.I. Shirshov, Contemporary Mathematicians, Birkhäuser, Basel, (2009), 113-118.
  • A. I. Shirshov, Some algorithmic problem for Lie algebras, In: L. A. Bokut, I. Shestakov, V. Latyshev, E. Zelmanov (eds), Selected works of A.I. Shirshov, Contemporary Mathematicians, Birkhäuser, Basel, (2009), 125-130.
  • S. Siciliano and H. Usefi, Lie structure of smash products, Israel J. Math., 217(1) (2017), 93-110.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebir ve Sayı Teorisi, Grup Teorisi ve Genellemeler, Kategori Teorisi, K Teorisi, Homolojik Cebir, Lie Grupları, Harmonik ve Fourier Analizi, Temel Matematik (Diğer)
Bölüm Makaleler
Yazarlar

Rafael Reno S. Cantuba Bu kişi benim

Erken Görünüm Tarihi 14 Temmuz 2023
Yayımlanma Tarihi 9 Ocak 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 35 Sayı: 35

Kaynak Göster

APA Cantuba, R. R. S. (2024). Lie structure of the Heisenberg-Weyl algebra. International Electronic Journal of Algebra, 35(35), 32-60. https://doi.org/10.24330/ieja.1326849
AMA Cantuba RRS. Lie structure of the Heisenberg-Weyl algebra. IEJA. Ocak 2024;35(35):32-60. doi:10.24330/ieja.1326849
Chicago Cantuba, Rafael Reno S. “Lie Structure of the Heisenberg-Weyl Algebra”. International Electronic Journal of Algebra 35, sy. 35 (Ocak 2024): 32-60. https://doi.org/10.24330/ieja.1326849.
EndNote Cantuba RRS (01 Ocak 2024) Lie structure of the Heisenberg-Weyl algebra. International Electronic Journal of Algebra 35 35 32–60.
IEEE R. R. S. Cantuba, “Lie structure of the Heisenberg-Weyl algebra”, IEJA, c. 35, sy. 35, ss. 32–60, 2024, doi: 10.24330/ieja.1326849.
ISNAD Cantuba, Rafael Reno S. “Lie Structure of the Heisenberg-Weyl Algebra”. International Electronic Journal of Algebra 35/35 (Ocak 2024), 32-60. https://doi.org/10.24330/ieja.1326849.
JAMA Cantuba RRS. Lie structure of the Heisenberg-Weyl algebra. IEJA. 2024;35:32–60.
MLA Cantuba, Rafael Reno S. “Lie Structure of the Heisenberg-Weyl Algebra”. International Electronic Journal of Algebra, c. 35, sy. 35, 2024, ss. 32-60, doi:10.24330/ieja.1326849.
Vancouver Cantuba RRS. Lie structure of the Heisenberg-Weyl algebra. IEJA. 2024;35(35):32-60.