As an associative algebra, the Heisenberg--Weyl algebra $\HWeyl$ is generated by two elements $A$, $B$ subject to the relation $AB-BA=1$. As a Lie algebra, however, where the usual commutator serves as Lie bracket, the elements $A$ and $B$ are not able to generate the whole space $\HWeyl$. We identify a non-nilpotent but solvable Lie subalgebra $\coreLie$ of $\HWeyl$, for which, using some facts from the theory of bases for free Lie algebras, we give a presentation by generators and relations. Under this presentation, we show that, for some algebra isomorphism $\isoH:\HWeyl\into\HWeyl$, the Lie algebra $\HWeyl$ is generated by the generators of $\coreLie$, together with their images under $\isoH$, and that $\HWeyl$ is the sum of $\coreLie$, $\isoH(\coreLie)$ and $\lbrak \coreLie,\isoH(\coreLie)\rbrak$.
Heisenberg--Weyl algebra commutation relation free Lie algebra Lie polynomial combinatorics on words Lyndon--Shirshov word generator and relation
Birincil Dil | İngilizce |
---|---|
Konular | Cebir ve Sayı Teorisi, Grup Teorisi ve Genellemeler, Kategori Teorisi, K Teorisi, Homolojik Cebir, Lie Grupları, Harmonik ve Fourier Analizi, Temel Matematik (Diğer) |
Bölüm | Makaleler |
Yazarlar | |
Erken Görünüm Tarihi | 14 Temmuz 2023 |
Yayımlanma Tarihi | 9 Ocak 2024 |
Yayımlandığı Sayı | Yıl 2024 Cilt: 35 Sayı: 35 |