Let $R$ be a ring which is not commutative. Assume that either $R$ is alternative, but not associative, or $R$ is associative and any commutator $v\in R$ satisfies: $v^2$ is in the center of $R.$ We show (using commutators) that if $R$ contains no divisors of zero and $\text{char}(R)\ne 2,$ then $R//C,$ the localization of $R$ at its center $C,$ is the octonions in the first case and the quaternions, in latter case. Our proof in both cases is essentially the same and it is elementary and rather self contained. We also give a short (uniform) proof that if a non-zero commutator in $R$ is not a zero divisor (with mild additional hypothesis when $R$ is alternative, but not associative (e.g.~that $(R,+)$ contains no $3$-torsion), then $R$ contains no divisors of zero.
Quaternion algebra Octonion algebra division algebra zero divisor commutator
Birincil Dil | İngilizce |
---|---|
Konular | Cebir ve Sayı Teorisi |
Bölüm | Makaleler |
Yazarlar | |
Erken Görünüm Tarihi | 19 Nisan 2024 |
Yayımlanma Tarihi | 12 Temmuz 2024 |
Gönderilme Tarihi | 1 Şubat 2024 |
Kabul Tarihi | 8 Nisan 2024 |
Yayımlandığı Sayı | Yıl 2024 Cilt: 36 Sayı: 36 |