Research Article
BibTex RIS Cite
Year 2023, , 95 - 103, 30.04.2023
https://doi.org/10.36890/iejg.1145729

Abstract

References

  • [1] Abbassi, M.T.K.: Note on the classification theorems of g-natural metrics on the tangent bundle of a Riemannian manifold. Comm. Math. Uni. Carolinae. 45 (4), 591-596 (2004).
  • [2] Abbassi, M.T.K.: g-natural metrics: new horizons in the geometry of tangent bundles of Riemannian manifolds. Note di Matematica. 28 (1), 6-35 (2008).
  • [3] Abbassi, M.T.K., Calvaruso, G., Perrone, D.: Harmonic sections of tangent bundles equipped with Riemannian g-natural metrics. The Quarterly Journal of Mathematics. 62 (2), 259-288 (2011).
  • [4] Abbassi, M.T.K., Sarih, M.: On natural metrics on tangent bundles of Riemannian manifolds. Arch. Math. (Brno). 41, 71-92 (2005).
  • [5] Akpınar, R. Ç.: On bronze Riemannian structures. Tbilisi Math. Journal. 13 (3), 161169 (2020).
  • [6] Altunbaş, M., Gezer, A., Bilen, L.: Remarks about the Kaluza-Klein metric on tangent bundle. International Journal of Geometric Methods in Modern Physics. 16 (3), 1950040 (2019).
  • [7] Anastasiei, M.: Locally conformal Kaehler structures on tangent bundle of a space form. Libertas Math. 19, 71-76 (1999).
  • [8] Dombrowski, P.: On the geometry of the tangent bundle. J. Reine Angew. Math. 210 73-88 (1962).
  • [9] Gezer, A.: On the tangent bundle with deformed Sasaki metric. International Electronic Journal of Geometry. 6 (2), 19-31 (2013).
  • [10] Gezer, A., Altunba¸s, M.: Some notes concerning Riemannian metrics of Cheeger Gromoll type. Journal of Mathematical Analysis and Applications. 396 (1), 119-132 (2012).
  • [11] Gezer, A., Karaman, Ç: On metallic Riemannian structures. Turkish Journal of Mathematics. 39 (6), 954-962, (2015).
  • [12] Hreţcanu, C.E., Crasmareanu, M.: Metallic structures on Riemannian manifolds. Revista de la Unión Matemática Argentina. 54 (2), 15-27 (2013).
  • [13] Hreţcanu, C.E., Crasmareanu, M.: Applications of the golden ratio on Riemannian manifolds. Turkish Journal of Mathematics. 33 (2), 179-191 (2009).
  • [14] Özkan, M., Çıtlak, A.A., Taylan, E.: Prolongations of golden structure to tangent bundle of order 2. Gazi University Journal of Science. 28 (2), 253–258 (2015).
  • [15] Özkan, M., Peltek, B.: A new structure on manifolds: silver structure. International Electronic Journal of Geometry. 9 (2), 59-69 (2016).
  • [16] Özkan, M., Taylan, E., Çıtlak, A.A.: On lifts of silver structure. Journal of Science and Arts. 39 (2), 223-234 (2017).
  • [17] Özkan, M., Yılmaz, F.: Metallic structures on differentiable manifolds. Journal of Science and Arts. 44 (3), 645-660 (2018).
  • [18] Peyghan, E., Firuzi, F., De, U.C.: Golden Riemannian structures on the tangent bundle with g-natural metrics. Filomat. 33 (8), 2543-2554 (2019).
  • [19] Salimov, A., Kazimova, S.: Geodesics of the Cheeger-Gromoll metric. Turkish Journal of Mathematics. 33 (1), 99-105 (2009).
  • [20] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds. Tohoku Math. J. 10, 338-358 (1958).
  • [21] Sekizawa, M.: Curvatures of tangent bundles with Cheeger-Gromoll metric. Tokyo J. Math. 14 (2), 407-417 (1991).
  • [22] Spinadel, V.W.: The metallic means family and forbidden symmetries. Int. Math. J. 2, 279-288 (2002).

Metallic Riemannian Structures on the Tangent Bundles of Riemannian Manifolds with $g-$Natural Metrics

Year 2023, , 95 - 103, 30.04.2023
https://doi.org/10.36890/iejg.1145729

Abstract

Let $(M,g)$ be a Riemannian manifold and $(TM,\tilde{g})$ be its tangent bundle with the $g-$natural metric. In this paper, a family of metallic Riemannian structures $J$ is constructed on $TM,$ found conditions under which these structures are integrable. It is proved that $(TM,\tilde{g},J)$ is decomposable if and only if $(M,g)$ is flat.

References

  • [1] Abbassi, M.T.K.: Note on the classification theorems of g-natural metrics on the tangent bundle of a Riemannian manifold. Comm. Math. Uni. Carolinae. 45 (4), 591-596 (2004).
  • [2] Abbassi, M.T.K.: g-natural metrics: new horizons in the geometry of tangent bundles of Riemannian manifolds. Note di Matematica. 28 (1), 6-35 (2008).
  • [3] Abbassi, M.T.K., Calvaruso, G., Perrone, D.: Harmonic sections of tangent bundles equipped with Riemannian g-natural metrics. The Quarterly Journal of Mathematics. 62 (2), 259-288 (2011).
  • [4] Abbassi, M.T.K., Sarih, M.: On natural metrics on tangent bundles of Riemannian manifolds. Arch. Math. (Brno). 41, 71-92 (2005).
  • [5] Akpınar, R. Ç.: On bronze Riemannian structures. Tbilisi Math. Journal. 13 (3), 161169 (2020).
  • [6] Altunbaş, M., Gezer, A., Bilen, L.: Remarks about the Kaluza-Klein metric on tangent bundle. International Journal of Geometric Methods in Modern Physics. 16 (3), 1950040 (2019).
  • [7] Anastasiei, M.: Locally conformal Kaehler structures on tangent bundle of a space form. Libertas Math. 19, 71-76 (1999).
  • [8] Dombrowski, P.: On the geometry of the tangent bundle. J. Reine Angew. Math. 210 73-88 (1962).
  • [9] Gezer, A.: On the tangent bundle with deformed Sasaki metric. International Electronic Journal of Geometry. 6 (2), 19-31 (2013).
  • [10] Gezer, A., Altunba¸s, M.: Some notes concerning Riemannian metrics of Cheeger Gromoll type. Journal of Mathematical Analysis and Applications. 396 (1), 119-132 (2012).
  • [11] Gezer, A., Karaman, Ç: On metallic Riemannian structures. Turkish Journal of Mathematics. 39 (6), 954-962, (2015).
  • [12] Hreţcanu, C.E., Crasmareanu, M.: Metallic structures on Riemannian manifolds. Revista de la Unión Matemática Argentina. 54 (2), 15-27 (2013).
  • [13] Hreţcanu, C.E., Crasmareanu, M.: Applications of the golden ratio on Riemannian manifolds. Turkish Journal of Mathematics. 33 (2), 179-191 (2009).
  • [14] Özkan, M., Çıtlak, A.A., Taylan, E.: Prolongations of golden structure to tangent bundle of order 2. Gazi University Journal of Science. 28 (2), 253–258 (2015).
  • [15] Özkan, M., Peltek, B.: A new structure on manifolds: silver structure. International Electronic Journal of Geometry. 9 (2), 59-69 (2016).
  • [16] Özkan, M., Taylan, E., Çıtlak, A.A.: On lifts of silver structure. Journal of Science and Arts. 39 (2), 223-234 (2017).
  • [17] Özkan, M., Yılmaz, F.: Metallic structures on differentiable manifolds. Journal of Science and Arts. 44 (3), 645-660 (2018).
  • [18] Peyghan, E., Firuzi, F., De, U.C.: Golden Riemannian structures on the tangent bundle with g-natural metrics. Filomat. 33 (8), 2543-2554 (2019).
  • [19] Salimov, A., Kazimova, S.: Geodesics of the Cheeger-Gromoll metric. Turkish Journal of Mathematics. 33 (1), 99-105 (2009).
  • [20] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds. Tohoku Math. J. 10, 338-358 (1958).
  • [21] Sekizawa, M.: Curvatures of tangent bundles with Cheeger-Gromoll metric. Tokyo J. Math. 14 (2), 407-417 (1991).
  • [22] Spinadel, V.W.: The metallic means family and forbidden symmetries. Int. Math. J. 2, 279-288 (2002).
There are 22 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Murat Altunbaş 0000-0002-0371-9913

Publication Date April 30, 2023
Acceptance Date September 20, 2022
Published in Issue Year 2023

Cite

APA Altunbaş, M. (2023). Metallic Riemannian Structures on the Tangent Bundles of Riemannian Manifolds with $g-$Natural Metrics. International Electronic Journal of Geometry, 16(1), 95-103. https://doi.org/10.36890/iejg.1145729
AMA Altunbaş M. Metallic Riemannian Structures on the Tangent Bundles of Riemannian Manifolds with $g-$Natural Metrics. Int. Electron. J. Geom. April 2023;16(1):95-103. doi:10.36890/iejg.1145729
Chicago Altunbaş, Murat. “Metallic Riemannian Structures on the Tangent Bundles of Riemannian Manifolds With $g-$Natural Metrics”. International Electronic Journal of Geometry 16, no. 1 (April 2023): 95-103. https://doi.org/10.36890/iejg.1145729.
EndNote Altunbaş M (April 1, 2023) Metallic Riemannian Structures on the Tangent Bundles of Riemannian Manifolds with $g-$Natural Metrics. International Electronic Journal of Geometry 16 1 95–103.
IEEE M. Altunbaş, “Metallic Riemannian Structures on the Tangent Bundles of Riemannian Manifolds with $g-$Natural Metrics”, Int. Electron. J. Geom., vol. 16, no. 1, pp. 95–103, 2023, doi: 10.36890/iejg.1145729.
ISNAD Altunbaş, Murat. “Metallic Riemannian Structures on the Tangent Bundles of Riemannian Manifolds With $g-$Natural Metrics”. International Electronic Journal of Geometry 16/1 (April 2023), 95-103. https://doi.org/10.36890/iejg.1145729.
JAMA Altunbaş M. Metallic Riemannian Structures on the Tangent Bundles of Riemannian Manifolds with $g-$Natural Metrics. Int. Electron. J. Geom. 2023;16:95–103.
MLA Altunbaş, Murat. “Metallic Riemannian Structures on the Tangent Bundles of Riemannian Manifolds With $g-$Natural Metrics”. International Electronic Journal of Geometry, vol. 16, no. 1, 2023, pp. 95-103, doi:10.36890/iejg.1145729.
Vancouver Altunbaş M. Metallic Riemannian Structures on the Tangent Bundles of Riemannian Manifolds with $g-$Natural Metrics. Int. Electron. J. Geom. 2023;16(1):95-103.