In this note we propose a new sectional curvature on a Riemannian manifold endowed with a semi-symmetric non-metric connection. A Chen-Ricci inequality is proven. Some possible applications in other fields are mentioned.
Ministry of Research, Innovation and Digitization, CNCS-UEFISCDI
Project Number
PN-III-P4-PCE-2021-1881,
References
[1] Agashe, N.S.: A semi-symmetric non-metric connection on a Riemannian manifold. Indian J. Pure Appl. Math. 23, 399–409 (1992).
[2] Agashe, N.S.; Chafle, M.R.: On submanifolds of a Riemannian manifold with a semi-symmetric non-metric connection. Tensor 55, 120–130 (1994).
[3] Chen, B.-Y.: Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimentions. Glasgow Math. J. 41, 33–41 (1999).
[4] Cimpoesu, F.; Mihai, A.: Characterizing the E ⊗ e Jahn-Teller potential energy surfaces by differential geometry tools, Symmetry 14(3), art 436
(2022).
[5] Friedmann, A.; Schouten, J.A.: Über die Geometrie der halbsymmetrischen Übertragungen. Math. Z. 21, 211–223 (1924).
[6] Hayden, H.: Subspaces of a space with torsion. Proc. London Math. Soc. 34, 27–50 (1932).
[7] Imai, T.: Notes on semi-symmetric metric connections. Tensor 24, 293–296 (1972).
[8] Mihai, A.: A note on derived connections from semi-symmetric metric connections. Math. Slovaca 67(1), 221–226 (2017).
[9] Nakao, Z.: Submanifolds of a Riemannian manifold with semisymmetric metric connections. Proc. Amer. Math. Soc. 54, 261–266 (1976).
[10] Opozda, B.: A sectional curvature for statistical structures. Linear Alg. Appl. 497, 134–161 (2016).
[11] Schouten, J.A.: Ricci-Calculus. An Introduction to Tensor Analysis and its Geometrical Applications. Springer-Verlag, Berlin (1954).
[12] Toader, A.M.; Buta, M.C.; Cimpoesu, F.; Mihai, A.: The holohedrization effect in ligand field models. Symmetry 16(1), art.22 (2024).
[1] Agashe, N.S.: A semi-symmetric non-metric connection on a Riemannian manifold. Indian J. Pure Appl. Math. 23, 399–409 (1992).
[2] Agashe, N.S.; Chafle, M.R.: On submanifolds of a Riemannian manifold with a semi-symmetric non-metric connection. Tensor 55, 120–130 (1994).
[3] Chen, B.-Y.: Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimentions. Glasgow Math. J. 41, 33–41 (1999).
[4] Cimpoesu, F.; Mihai, A.: Characterizing the E ⊗ e Jahn-Teller potential energy surfaces by differential geometry tools, Symmetry 14(3), art 436
(2022).
[5] Friedmann, A.; Schouten, J.A.: Über die Geometrie der halbsymmetrischen Übertragungen. Math. Z. 21, 211–223 (1924).
[6] Hayden, H.: Subspaces of a space with torsion. Proc. London Math. Soc. 34, 27–50 (1932).
[7] Imai, T.: Notes on semi-symmetric metric connections. Tensor 24, 293–296 (1972).
[8] Mihai, A.: A note on derived connections from semi-symmetric metric connections. Math. Slovaca 67(1), 221–226 (2017).
[9] Nakao, Z.: Submanifolds of a Riemannian manifold with semisymmetric metric connections. Proc. Amer. Math. Soc. 54, 261–266 (1976).
[10] Opozda, B.: A sectional curvature for statistical structures. Linear Alg. Appl. 497, 134–161 (2016).
[11] Schouten, J.A.: Ricci-Calculus. An Introduction to Tensor Analysis and its Geometrical Applications. Springer-Verlag, Berlin (1954).
[12] Toader, A.M.; Buta, M.C.; Cimpoesu, F.; Mihai, A.: The holohedrization effect in ligand field models. Symmetry 16(1), art.22 (2024).
Mihai, A., & Mihai, I. (2024). A Note on a Well-Defined Sectional Curvature of a Semi-Symmetric Non-Metric Connection. International Electronic Journal of Geometry, 17(1), 15-23. https://doi.org/10.36890/iejg.1440523
AMA
Mihai A, Mihai I. A Note on a Well-Defined Sectional Curvature of a Semi-Symmetric Non-Metric Connection. Int. Electron. J. Geom. April 2024;17(1):15-23. doi:10.36890/iejg.1440523
Chicago
Mihai, Adela, and Ion Mihai. “A Note on a Well-Defined Sectional Curvature of a Semi-Symmetric Non-Metric Connection”. International Electronic Journal of Geometry 17, no. 1 (April 2024): 15-23. https://doi.org/10.36890/iejg.1440523.
EndNote
Mihai A, Mihai I (April 1, 2024) A Note on a Well-Defined Sectional Curvature of a Semi-Symmetric Non-Metric Connection. International Electronic Journal of Geometry 17 1 15–23.
IEEE
A. Mihai and I. Mihai, “A Note on a Well-Defined Sectional Curvature of a Semi-Symmetric Non-Metric Connection”, Int. Electron. J. Geom., vol. 17, no. 1, pp. 15–23, 2024, doi: 10.36890/iejg.1440523.
ISNAD
Mihai, Adela - Mihai, Ion. “A Note on a Well-Defined Sectional Curvature of a Semi-Symmetric Non-Metric Connection”. International Electronic Journal of Geometry 17/1 (April 2024), 15-23. https://doi.org/10.36890/iejg.1440523.
JAMA
Mihai A, Mihai I. A Note on a Well-Defined Sectional Curvature of a Semi-Symmetric Non-Metric Connection. Int. Electron. J. Geom. 2024;17:15–23.
MLA
Mihai, Adela and Ion Mihai. “A Note on a Well-Defined Sectional Curvature of a Semi-Symmetric Non-Metric Connection”. International Electronic Journal of Geometry, vol. 17, no. 1, 2024, pp. 15-23, doi:10.36890/iejg.1440523.
Vancouver
Mihai A, Mihai I. A Note on a Well-Defined Sectional Curvature of a Semi-Symmetric Non-Metric Connection. Int. Electron. J. Geom. 2024;17(1):15-23.